
CH132 Datasheet

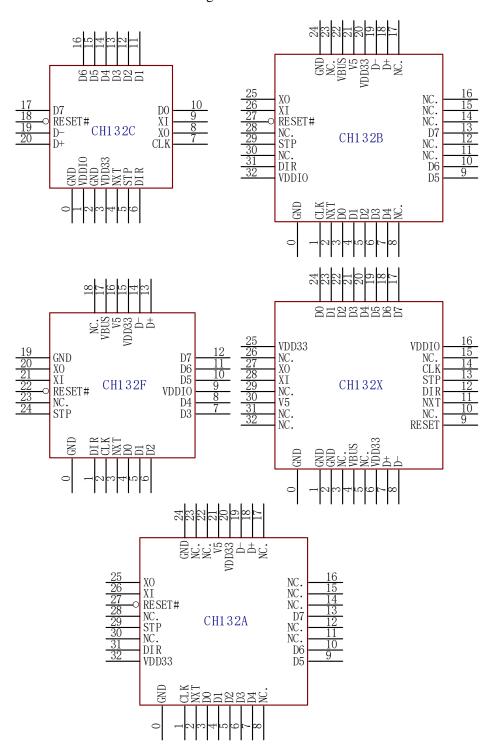
V2.2

https://wch-ic.com

Overview

CH132 is a high-speed USB transceiver chip (USB PHY, High Speed Transceiver) with ULPI interface, compatible with USB 2.0 protocol specification and UTMI+ Low Pin Interface (ULPI) 1.1 protocol specification. It supports USB2.0 high-speed 480Mbps, full-speed 12Mbps and low-speed 1.5Mbps data transmission and reception, and can be used to extend the USB host port or device port for MCU or FPGA with ULPI interface.

Features


- Compatible with USB Specification Rev. 2.0.
- Compatible with UTMI+ Low Pin Interface (ULPI) Rev 1.1.
- 12-pin ULPI interface, 1.8V~3.3V I/O level, 60MHz clock.
- Support USB host and USB device.
- Support USB High-speed, Full-speed and Low-speed.
- Support 3-pin or 6-pin Full-Speed or Low-Speed serial mode.
- Support D+ and D- signal line switching modes
- Built-in 3.3V low dropout linear regulator, support 3.3V or 5V supply input.
- Built-in power-on reset circuit, built-in clock oscillator and PLL.
- Built-in impedance matching resistor, built-in oscillation capacitor, with lower BOM cost.
- Support ULPI input clock and output clock modes
- USB pin with 6KV enhanced ESD performance.
- Industrial-grade temperature range: -40 to 85°C.
- Available in QFN24 and QFN32 packages.

v2. 2 1

Chapter 1 Pin Information

1.1 Pinouts

Figure 1-1 Pinouts

Note: Pin 0# is the EPAD of QFN package.

1.2 Packages

Table 1-1 Package description

Package Form	Body Size		Pin Pitch		Package Description	Order Model
QFN20C_2x2	2*2mm		0.32mm	12.6mil	Quad Flat No-Lead Package	CH132C
QFN24_4x4	4*4mm		0.5mm	19.7mil	Quad Flat No-Lead Package	CH132F
QFN32_5x5	5*5mm		0.5mm	19.7mil	Quad Flat No-Lead Package	CH132B
QFN32_5x5	5*5mm		0.5mm	19.7mil	Quad Flat No-Lead Package	CH132A
QFN32_5x5	5*5mm		0.5mm	19.7mil	Quad Flat No-Lead Package	CH132X

Note:

The CH132B is based on the CH132A upgrades with the addition of the VDDIO pin and is forward compatible with the CH132A pin.

CH132C/F/B/X is available for new designs, and it is recommended that the smaller CH132C is preferred.

1.3 Pin Definitions

Table 1-2 CH132 pin definitions

]	Pin No.			Pin		
132C	132F	132H 132A	132B	132X	name	Туре	Function Description
20	13	18	18	7	D+	USB	USB2.0 high-speed differential signal lines DP
19	14	19	19	8	D-	USB	USB2.0 high-speed differential signal lines DM
-	-	1	-	-	CLK	О	ULPI 60MHz clock signal output
7	2	-	1	14	CLK	I/O	ULPI 60MHz clock signal output or 60MHz clock signal input
4	3	2	2	11	NXT	О	ULPI Next signal output
6	1	31	31	12	DIR	О	ULPI Direction signal output
5	24	29	29	13	STP	I	ULPI Stop signal input, built-in controlled pull-up current
10	4	3	3	24	D0	I/O	ULPI bidirectional DATA0, built-in weak pull-down resistor
11	5	4	4	23	D1	I/O	ULPI bidirectional DATA1, built-in weak pull-down resistor
12	6	5	5	22	D2	I/O	ULPI bidirectional DATA2, built-in weak pull-down resistor
13	7	6	6	21	D3	I/O	ULPI bidirectional DATA3, built-in weak pull-down resistor
14	8	7	7	20	D4	I/O	ULPI bidirectional DATA4, built-in weak pull-down resistor
15	10	9	9	19	D5	I/O	ULPI bidirectional DATA5, built-in weak pull-down resistor
16	11	10	10	18	D6	I/O	ULPI bidirectional DATA6, built-in weak pull-down resistor
17	12	13	13	17	D7	I/O	ULPI bidirectional DATA7, built-in weak pull-down resistor
-	-	26	-	-	XI	IL	Crystal input, external 12MHz crystal one end, or external

			,				· · · · · · · · · · · · · · · · · · ·
							clock input
							Crystal input, external 12MHz crystal one end, or external
9	21	-	26	27	XI	IL	clock input, or shorting GND selects ULPI clock mode from
							CLK pin.
							Inverted output of crystal oscillator, need to connect the other
8	20	25	25	28	XO	OL	end of the external 12MHz crystal
18	22	27	27		RESET	т	Deact signal imput setive lavy built in mull up assisted
18	22	21	27	-	#	I	Reset signal input, active low, built-in pull-up resistor
-	-	-	-	9	RESET	I	Reset signal input, active high, built-in pull-down resistor
							VBUS detect input, active high, built-in pull-up resistor.
-	17	-	22	4	VBUS	I	Some models or lot numbers do not support VBUS, it is
							recommended to suspend or short VDD33
	1.6	21	2.1	20	37.5	D	5V or 3.3V power input, external 1uF~4.7uF decoupling
-	16	21	21	30	V5	P	capacitor
	1.5	20	20		MDD22	D	LDO output and 3.3V power input, external 1uF~4.7uF
-	15	20	20	6	VDD33	P	decoupling capacitor
3	-	32	-	25	VDD33	P	3.3V power input
1	9		22	1.0	VDDIO	D	ULPI interface I/O signal supply voltage, support 1.8V, 2.5V,
1	9	-	32	16	VDDIO	P	3.3V voltage, external 0.1uF decoupling capacitor
2	19	24	24	1,	GND	Р	Common arrayed actional but CND compation recommonded
2	19	24	24	2	GND	r	Common ground, optional but GND connection recommended
0	0	0	0	0	GND	P	Common ground (QFN EPAD), necessary connection
		8,	8,				
		11,	11,	3,			
		12,	12,	4,			
		14,	14,	5,			
	18,	15,	15,	10,			
-	23	16,	16,	15,	NC.	-	Empty or reserved pins, connection prohibited
	23	17,	17,	26,			
	22,	22,	29,				
		23,	23,	31,			
		28,	28,	32			
		30	30				

Pin type:

- (1) I: 3.3V signal input for CH132A, VDDIO voltage signal input for CH132C/F/B/X.
- (2) O: 3.3V signal output for CH132A, VDDIO voltage signal output for CH132C/F/B/X.
- (3) IL: Signal input for rated 1.2V voltage, supports signal input for 1.2V to 1.4V voltage.
- (4) OL: Signal output for rated 1.2V voltage.
- (5) P: Power or ground
- (6) USB: USB signal

Chapter 2 Basic Functions

2.1 Clock and Reset

2.1.1 Clock Source

The CH132 requires a 12 MHz clock source, either by inputting the clock from pin XI and leaving XO suspended, or by connecting an external 12MHz crystal to pins XI and XO to generate the clock source via an internal oscillator. The CH132 then generates the multiple clocks required by the chip via PLL:

- 1.5MHz clock for USB low-speed data transfer
- 12MHz clock for USB full-speed data transfer
- 480MHz clock for USB high-speed data transfer
- 60MHz clock for ULPI controller
- Other clocks required for internal data processing

By default, the ULPI clock mode is output, and a 60MHz clock is output from the CLK pin to the ULPI LINK.

CH132C/F/B/X also supports input ULPI clock mode. During power-on reset, if CH132 detects that the XI pin is shorted to GND, the CLK pin is the clock input, and the ULPI LINK provides a 60MHz clock, and CH132 generates required for each clock.

2.1.2 Power-on Reset

The CH132 has a built-in power-on reset module, which generally does not require an external reset signal. When the power supply is powered on, the chip's internal POR power-on reset module will generate a power-on reset timing and delay Trpor to wait for the power supply to stabilize. During operation, when the power supply voltage falls below V_{lvr} , the chip's internal low voltage reset (LVR) module generates a low voltage reset until the voltage rises back up and delays for the power supply to stabilize. Figure 2-1 shows the power-on reset process as well as the low voltage reset process.

VDD33

RESET
DELAY

INTERNAL
RESET

2.1.3 External Reset

The external reset input pin RESET# contains a pull-up resistor of about $24K\Omega$, and if the chip needs to be reset externally, the pin can be driven low (open-drain drive is recommended) with a low pulse width of at least Twreset. It is recommended not to attach an external pull-up resistor.

The CH132X's external reset input pin, RESET, has a built-in pull-down resistor, and driving this pin high will reset the chip.

2.2 Power Supply

The CH132 has a built-in low dropout linear regulator LDO. 3.3V supply by default, 5V supply is also supported.

For the 3.3V power supply system, the 3.3V power supply is input to the VDD33 pin and the V5 pin at the same time for internal analog circuits.

For a 5V power supply system, the 5V power supply is input to the V5 pin, and the internal LDO generates a 3.3V power supply at the VDD33 pin for internal analog circuitry. The CH132C does not have a V5 pin and does not support a 5V supply.

In both ways, external decoupling capacitors are required on the VDD33 and V5 pins, and VDD33 is recommended to be 0.1uF in parallel with 10uF or 4.7uF.

Avoid feeding the 5V power from VBUS directly into V5 pin. It is recommended that an overvoltage protection circuit be added between VBUS pin and V5 pin.

For CH132C/F/B/X, the VDDIO pin is used for I/O circuit power supply and supports 1.8V, 2.5V, and 3.3V voltages. For CH132A, the VDD33 pin is also used for I/O circuit power supply and supports 3.3V only.

2.3 USB Transceiver

The CH132 USB transceiver takes on USB high-speed, full-speed and low-speed data transceiver tasks. Transceiver includes the differential driver circuitry necessary for USB high-speed, full-speed and low-speed data transmission, the differential and single ended receivers for USB high-speed, full-speed and low-speed data reception, the circuitry to detect high-speed bus activity and the circuitry to detect high-speed bus disconnection. The USB port has a variety of built-in matching resistors, including impedance matching resistors, device pull-up resistors, host pull-down resistors, etc.

A detailed relationship between the registers and the USB port mode can be found in Table 2-1 below.

Designation and times									
	Register settings								
USB port mode	XCVR	TERM	OP	DP	DM				
CSB pert mede	SELECT[1:0]	SELECT	MODE[1:0]	PULLDOWN	PULLDOWN				
	SEEECT[1.0]	SLEEC 1	WODE[1.0]	TOLLDOWN	TOLLDOWIN				
3-state drivers	xxb	X	01b	X	X				
Host Chirp	00b	0	10b	1	1				
Host High-speed	00b	0	00b	1	1				
Host Full-speed	x1b	1	00b	1	1				
Host High-speed or	011	1	00b	1	1				
Full-speed suspend	01b	1	UUB	1	1				
Host High-speed or	01b	1	10b	1	1				
Full-speed resume	UID	1	106	1	1				
Host Low-speed	10b	1	00b	1	1				
Host Low-speed suspend	10b	1	00b	1	1				
Host Low-speed resume	10b	1	10b	1	1				
Host Test J or Test K	00b	0	10b	1	1				
Peripheral Chirp	00b	1	10b	0	0				
Peripheral High-speed	00b	0	00b	0	0				
Peripheral Full-speed	01b	1	00b	0	0				
Peripheral High-speed	01b	1	00b	0	0				
or Full-speed suspend	UID	1	UUB	0	0				
Peripheral High-speed	01b	1	10b	0	0				
or Full-speed resume	UID	1	106	U	0				
Peripheral Test J or Test K	00b	0	10b	0	0				

Table 2-1 Register settings and port mode relationships

2.4 ULPI Controller

The CH132 provides a 12 Pin interface compatible with the ULPI (UTMI+ Low Pin Interface) 1.1 protocol. This interface should be connected to the ULPI interface of the ULPI LINK, which has a USB controller at the other end.

This ULPI interface controller has the following functions:

- ULPI protocol compatible interface and register settings
- Allow functional control via USB host or peripheral devices
- Parse data transmitted or received by USB
- Prioritize USB data transmitting and receiving, interrupts and register operations
- 3-pin serial mode
- 6-pin serial mode

2.5 ULPI RX CMD Data

Table 2-2 RXCMD data bit format

Bit	Name	Default	Description						
[1:0]	LineState	00b	Corresponds to UTMI+ LineState two signals: LineState[0] corresponds to receiving single-ended data from DP, LineState[1] corresponds to receiving single-ended data from DM.						
[3:2]	Reserved	00b	Reserved, a	Reserved, always 00.					
[5:4]			UTMI event signal encoding: Value RxActive RxError HostDisconnect 00 0 0 0 01 1 0 0 11 1 1 0 10 X X 1						
6	Reserved	0b	Reserved, always 0.						
7	Reserved	0b	Reserved, data should be ignored.						

2.6 3-pin and 6-pin Serial Mode

The CH132 provides either 3-pin or 6-pin serial modes. Select the serial mode of the 3-wire or 6-wire interface as needed to transfer full-speed or low-speed USB packets. 3-wire serial mode interface mapping is shown in Table 2-3, and 6-wire serial mode interface mapping is shown in Table 2-4.

Entering or exiting the 3-pin or 6-pin serial mode can be described in the R8_INTF_CTRL register regarding the 3PIN FSLS SERIAL or 6PIN FSLS SERIAL bit is described.

Table 2-3 Signal mapping for 3-pin serial

Signal	Maps to	Direction	Description
TX_ENABLE	DATA0	I	Mode selection, transmit enable. Active high. 0: Receive data; 1: Transmit data.
DAT	DATA1	I/O	When TX_ENABLE = 1, transmit differential data on DP and DM. When TX_ENABLE = 0, receive differential data from DP and DM.
SE0	DATA2	I/O	When TX_ENABLE = 1, transmit single-ended zero

Signal	Maps to	Direction	Description
			on DP and DM.
			When TX_ENABLE = 0, receive single-ended zero
			from DP and DM.
Reserved	DATA3	O, PD	Reserved, CH132 pin output data should be ignored.
Reserved[7:4]	DATA[7:4]	O, PD	Reserved, CH132 pin provides pull-down resistor or output low.

Table 2-4 Signal mapping for 6-pin serial

Signal	Maps to	Direction	Description
TX_ENABLE	DATA0	I	Transmit enable. Active high.
TX_DAT	DATA1	I	Transmit differential data on DP and DM
TX_SE0	DATA2	I	Transmit single-ended zero on DP and DM
Reserved	DATA3	O, PD	Reserved, CH132 pin output data should be ignored.
RX_DP	DATA4	О	Receive single-ended data from DP
RX_DM	DATA5	О	Receive single-ended data from DM
RX_RCV	DATA6	О	Receive differential data from DP and DM
Reserved	DATA7	O, PD	Reserved, CH132 pin provides pull-down resistor or output low.

Chapter 3 ULPI Registers

3.1 Register Description

The following abbreviations may be used in this datasheet when describing registers:

Register bit attributes	Description
RO	Read-only. Data is generated and changed by hardware.
WO	Write-only (This bit cannot be read, and the read value is uncertain)
RW	Readable and writable.

Description of registers related to ULPI interface operation of CH132 series chips. The default is based on CH132B and CH132C/F/X. For other models such as CH132A or CH132H, please note if there are any differences.

Table 3-1 CH132 ULPI registers

Table 3-1 CH132 ULPI registers									
Name		Address (6 bit)		Description	Reset Value			
Name	Read	Write	Set	Clear	Description	Reset Value			
R8_VENDOR_ID_L	0x00	-	-	-	Low byte of manufacturer ID register	0x86 [Note 10]			
R8_VENDOR_ID_H	0x01	ı	-	ı	High byte of manufacturer ID register	0x1A [Note 11]			
R8_PRODUCT_ID_L	0x02	1	-	-	Low byte of manufacturer ID register	0x32 [Note 12]			
R8_PRODUCT_ID_H	0x03	-	-	-	High byte of manufacturer ID register	0x01 [Note 13]			
R8_FUNC_CTRL	0x04-0x06	0x04	0x05	0x06	ULPI function control register	0x41 [Note 1]			
R8_INTF_CTRL	0x07-0x09	0x07	0x08	0x09	ULPI interface control register	0x00			
R8_OTG_CTRL	0x0A-0x0C	0x0A	0x0B	0x0C	OTG control register	0x06 [Note 2]			
R8_USB_INTR_EN_R	0x0D-0x0F	0x0D	0x0E	0x0F	USB rising interrupt enable register	0x01 [Note 2]			
R8_USB_INTR_EN_F	0x10-0x12	0x10	0x11	0x12	USB falling interrupt enable register	0x01 [Note 2]			
R8_USB_INTR_STAT	0x13	-	-	-	USB interrupt status register	0x00			
R8_USB_INTR_L	0x14	-	-	-	USB interrupt latch register	0x00			
R8_SCRATCH	0x16-0x18	0x16	0x17	0x18	Scratch register	0x00			
R8_USB_IO_SWAP	0x39-0x3B	0x39	0x3A	0x3B		0x00 [Note 14]			
	Other				Reserved	0x00			

- (1) R: Read, readable register. Read-only if there is no corresponding W/S/C.
- (2) W: Write, the register is written, the new data will overwrite the original data of this register directly during the operation.
- (3) S: Set, register by position 1, the new data will be written with the original data of this register by bit or operation.
- (4) C: Clear, the register is cleared by bit, the new data will be written with the original data of this register after bit and operation.

Note 10, Note 11, Note 12, Note 13: 0x00 for CH132A.

Note 14: This register is not supported for CH132A.

Recommendation:

Set the target parameters to the R8_FUNC_CTRL and R8_OTG_CTRL registers after each power-up or reset, regardless of the original values.

No need to manipulate and use each register of R8_USB_INTR_*, which can be implemented with RxEvent/LineState status in RXCMD.

ULPI function control register (R8_FUNC_CTRL, Address R = 04h/05h/06h, W = 04h, S = 05h, C = 06h)

Bit	Symbol	Access	Description	Reset Value
7	Reserved	RO	Reserved	0
6	SUSPEND	RW	Suspend: Enter low-power mode. Active low. The ULPI linker can exit low power mode through STP. This bit is automatically set to 1 when the CH132 exits low power mode. 1: Normal.	1
5	RESET	RW	Internal Reset: Active high. This does not reset the ULPI interface or the ULPI register. When the reset is completed, the CH132 will desert DIR and automatically clear this bit. 0: Normal; 1: Enable reset.	0
[4:3]	OP MODE	RW	Operation Mode: Selects the required bit-encoding style during transfer 00: Normal; 01: Not drive; 10: Disable bit-stuffing and NRZI encoding; 11: Reserved.	00Ъ
2	TERM SELECT	RW	Termination selection: Controls the pull-up/pull-down resistor and high-speed terminations, depending on XCVR SELECT, OP MODE, DP_PULLDOWN and DM_PULLDOWN. As shown in Table 2-1	0
[1:0]	XCVR SELECT	RW	Transceiver selection: 00: Enable the high-speed transceiver 01: Enable the full-speed transceiver 10: Enable the low-speed transceiver 11: Enable the full-speed transceiver for low-speed packets (full-speed preamble is automatically prefixed)	01b

ULPI interface control register (R8_INTF_CTRL, Address R = 07h/08h/09h, W = 07h, S = 08h, C = 09h)

Bit	Symbol	Access	Description	Reset Value
7	INTF_PROT_DIS	RW	Disable interface protect: The ULPI interface protection circuitry built into the control chip when the ULPI linker is not output to STP and DATA[7:0] 0: Enable ULPI interface protection circuit, enable STP weak pull-ups; 1: Disable ULPI interface protection circuit, disable STP weak pull-ups.	0

[6:2]	Reserved	RO	Reserved	00000Ь
1	3PIN_FSLS_SERIAL	RW	3-Pin full-speed and low-speed serial mode: Changes the ULPI interface into a 3-pin serial interface. The CH132 automatically clears this bit when the mode is exited. 0: Disables 3-pin serial mode, full-speed low-speed packet transfer via ULPI parallel port; 1: Enables 3-pin serial mode, full-speed low-speed packet transmission over 3-pin interface	0
0	6-Pin full-speed and low-speed serial mode: Changes the ULPI interface into a 3-pin serial interface. To CH132 will automatically clear this bit when the mode exited. O: Disables 6-pin serial mode, full-speed low-speed pactransfer via ULPI parallel port; 1: Enables 6-pin serial mode, full-speed low-speed pactransfer via ULPI parallel port;		Changes the ULPI interface into a 3-pin serial interface. The CH132 will automatically clear this bit when the mode is exited. 0: Disables 6-pin serial mode, full-speed low-speed packet	0

OTG control register (R8_OTG_CTRL, Address R = 0Ah/0Bh/0Ch, W = 0Ah, S = 0Bh, C = 0Ch)

Bit	Symbol	Access	Description	Reset Value
[7:3]	Reserved	RO	Reserved	00000ь
2	DM_PULLDOWN	RW	DM pull-down enable: 0: DM pull-down resistor disabled 1: DM pull-down resistor enabled	1
1	DP_PULLDOWN	RW	DP pull-down enable: 0: DP pull-down resistor disabled 1: DP pull-down resistor enabled	1
0	Reserved	RO	Reserved	0

USB rising interrupt enable register (R8_USB_INTR_EN_R, Address R = 0Dh/0Eh/0Fh, W = 0Dh, S = 0Eh, C = 0Fh)

Bit	Symbol	Access	Description	Reset Value
[7:1]	Reserved	RO	Reserved	0000000ь
0	HOST_DISCON_R	RW	Host disconnect rise: Enable Interrupts for logic 0 to logic 1 transitions on HOST DISCON	1

USB falling interrupt enable register (R8_USB_INTR_EN_F, Address R = 10h/11h/12h, W = 10h, S = 11h, C = 12h)

Bit	Symbol	Access	Description	Reset Value
[7:1]	Reserved	RO	Reserved	0000000ь
0	HOST_DISCON_F	RW	Host disconnect rise: Enable Interrupts for logic 1 to logic 0 transitions on HOST_DISCON	1

USB interrupt status register (R8_USB_INTR_STAT, Address R = 13h)

İ	Bit	Symbol	Access	Description	Reset Value
I	[7:1]	Reserved	RO	Reserved	0000000ь
	0	HOST_DISCON	RO	Host disconnect: Provides UTMI+ host port disconnect status values. 0: Connected, USB device detected on host port; 1: Disconnected, no USB device connection detected Only supports high-speed USB disconnect detection, not full-speed and low-speed disconnect detection.	0

USB interrupt latch register (R8_USB_INTR_L, Address R = 14h)

Bit	Symbol	Access	Description	Reset Value
[7:1]	Reserved	RO	Reserved	0000000ь
0	HOST_DISCON	RO	Host disconnect latch: Automatically set when an unmasked event occurs on HOST_DISCON. CLEARED when this register is READ	0

SCARTCH register (R8_SCARTCH, Address R = 16h)

Bit	Symbol	Access	Description	Reset Value
[7:0]	SCARTCH	RW	Registers used for testing, readable and writable, without affecting chip functionality	00000000ь

USB I/O pin swap register (R8_USB_IO_SWAP, Address R = 39h/3Ah/3Bh, W = 39h, S = 3Ah, C = 3Bh)

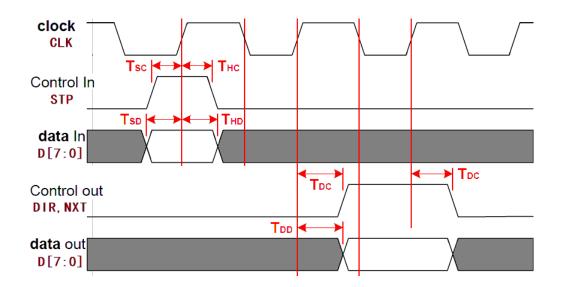
Bit	Symbol	Access	Description	Reset Value
[7:2]	Reserved	RO	Reserved	000000Ь
1	USB_IO_SWAP	RW	Swap USB signal pin enable: 0: Do not swap D+ and D- pins; 1: Swap D+ and D- pins.	0
0	Reserved	RO	Reserved	0

Chapter 4 Parameters

4.1 Absolute Maximum Ratings (Critical or exceeding the absolute maximum value may cause the chip to operate improperly or even be damaged.)

Symbol	Parameter description	Min.	Max.	Unit
TA	Operating ambient temperature	-40	85	°C
TS	Storage ambient temperature	-55	150	°C
V5	LDO input voltage (pin V5 to power, pin GND to ground)	-0.4	5.5	V
VDD33	3.3V source voltage (pin VDD33 to power, pin GND to ground)	-0.4	3.8	V
VDDIO	ULPI interface I/O supply voltage for VDDIO pin	-0.4	3.8	V
VUSB	Voltage on USB signal pins	-0.4	VDD33+0.4	V
VIO	Voltage on other input or output pins (excluding XI and XO)	-0.4	VDD33+0.4 VDDIO+0.4	V
VXI	Voltage on XI pin	-0.3	1.5	V
VESD	HBM ESD withstand voltage on I/O pins	6K		V

4.2 Electrical Characteristics (Test conditions: TA=25°C, V5=VDD33=3.3V, VDDIO=3.3V, no USB signal pins included)

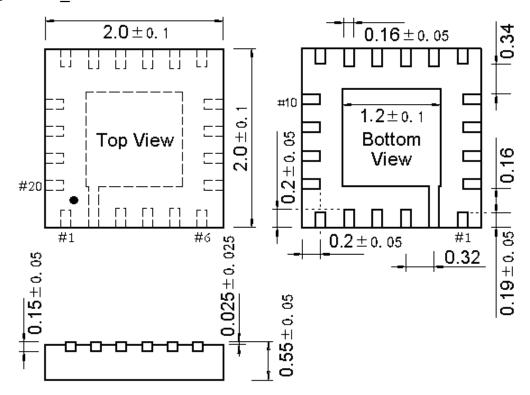

Symbol	Parameter description	Min.	Тур.	Max.	Unit	
	CH132F/B/X	LDO input supply voltage,	3.8	5.0	5.25	
V5	СН132А/Н	enable internal LDO	4.5	5.0	5.25	V
	External input power voltage	No internal LDO required	3.15	3.3	3.45	
VDD33	LDO output voltage	Enable internal LDO	3.15	3.3	3.45	V
VDD33	External 3.3V voltage supply	No internal LDO required	3.15	3.3	3.45	v
VDDIO	ULPI interface I/O signal supp	oly voltage	1.7	3.3	3.6	V
ILDO	Internal power regulator LDO extern	al load capability			30	mA
ICC	Operating current during high-spee	d USB transfer		27		mA
ICC0	Operating current in the id		19		mA	
ISLP	Low power mode supply current (i LDO)		0.13	0.4	mA	
VILXI	XI pin low level input vo	ltage	0		0.3	V

VIHXI	XI pin high level input voltage	0.9		1.2	V		
RPD	Pull-down resistors for D7~D0 pins	50	70	100	ΚΩ		
Vlvr	VDD33 power low voltage reset voltage threshold	2.5	2.9	3.15	V		
	VDDIO=3.3V						
VIL33	ULPI interface I/O pin low level input voltage	0		0.8	V		
VIH33	ULPI interface I/O pin high level input voltage	1.9		VDDIO	V		
VOL33	Low level output voltage @ 8mA current input		0.4	0.6	V		
VOH33	High level output voltage @ 8mA current output	VDDIO-0.6	VDDIO-0.4		V		
IPU33	Pull-up current on the STP pin	20	40	80	uA		
	VDDIO=1.8V						
VIL18	ULPI interface I/O pin low level input voltage	0		0.5	V		
VIH18	ULPI interface I/O pin high level input voltage	1.2		VDDIO	V		
VOL18	I/O pin low level output voltage @ input 5mA current		0.4	0.6	V		
VOH18	I/O pin high level output voltage @ output 5mA current	VDDIO-0.6	VDDIO-0.4		V		
IPU18	Low voltage reset threshold	7	15	30	uA		

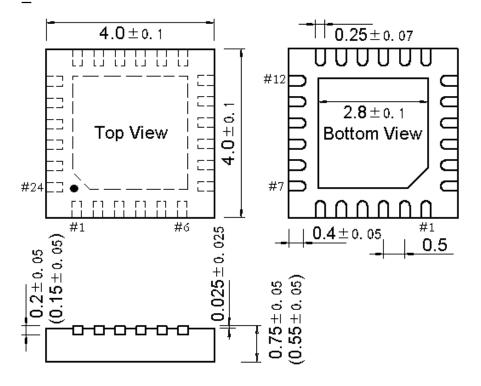
4.3 Timing Parameters (Test conditions: TA=25°C, V5=VDD33=3.3V, VDDIO=3.3V)

Symbol	Parameter description	Min.	Тур.	Max.	Unit
Fxi	XI input clock frequency, XI external crystal frequency	11.995	12	12.005	MHz
Dutyxi	Duty cycle of XI input clock	35	50	65	%
Fstart	CLK clock frequency of ULPI in the initial state	55	60	65	MHz
Fsteady	CLK clock frequency of ULPI in the steady state	59.97	60	60.03	MHz
Dutycko	Duty cycle of ULPI CLK clock	45	50	55	%
Tsteady	Time from XI or CLK input clock stabilization to PLL stabilization		0.5	1.5	mS
Tstart	Time from exit low-power mode to PLL stabilization		2	4	mS
Trpor	Time from power on or low voltage reset to normal operation	10	14	17	mS
Twreset	RESET# pin input reset low level pulse width	2			uS
Twreset	RESET pin input reset high level pulse width	2			uS
Trreset	Pin input reset to normal operation time	10	13	15	mS
	Output ULPI clock mode				

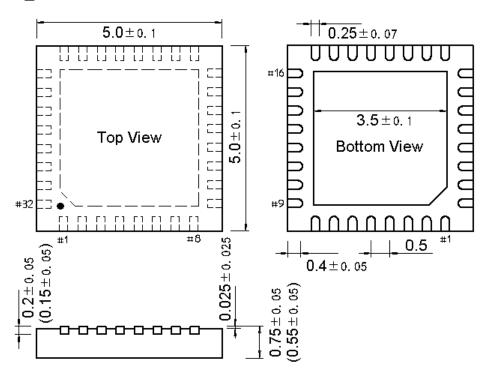
TSC	STP input setup time			6	nS
THC	STP input hold time	0			nS
TSD	Data D0~D7 input setup time			6	nS
THD	Data D0~D7 input hold time	0			nS
TDC	Valid delay time for DIR or NXT output	0.8		6	nS
TDD	Valid delay time for Data D0~D7 output	0.8		8	nS
Input ULPI clock mode					
TSC	STP input setup time			2.5	nS
THC	STP input hold time	1			nS
TSD	Data D0~D7 input setup time			2.5	nS
THD	Data D0∼D7 input hold time	1			nS
TDC	Valid delay time for DIR or NXT output	1.5		6.5	nS
TDD	Valid delay time for Data D0~D7 output	1.5		7	nS


Chapter 5 Package Information

Note:


All dimensions are in millimeters.

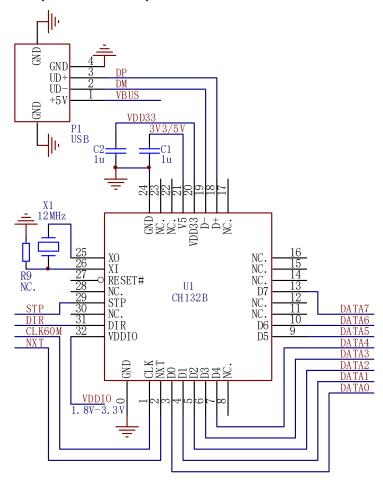
The pin center spacing values are nominal, without error. And the error of dimensions other than the pin center spacing values is not more than ± 0.2 mm.


5.1 QFN20C_2x2

5.2 QFN24 4x4

5.3 QFN32_5x5

Chapter 6 Applications


6.1 Minimum System

The CH132 acts as a USB PHY for the microcontroller and requires 12 signal lines to be connected. The crystal in the diagram can be replaced by the 12MHz clock provided by the microcontroller or FPGA (Note that the XI pin voltage is only 1.2V, or change to CLK clock input mode). The RESET# pin is an optional connection and is left dangling by default. The C1 and C2 capacitors (MLCC) are optional in the 1uF~4.7uF range.

VDDIO is the power supply of ULPI interface I/O pins, need to add 0.1uF~1uF decoupling capacitor, VDDIO voltage should be the same as the I/O voltage of MCU or FPGA.

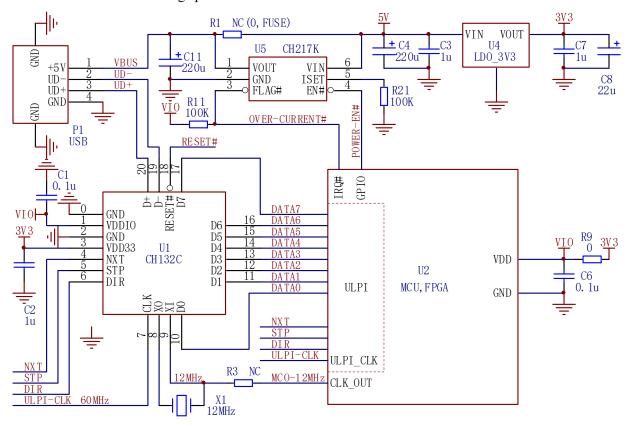
It is recommended that the CH132 be externally powered with a preferred 3.3V input from both V5 and VDD33.

In the figure, R9 is not connected by default, it is the ULPI clock output mode, and the CLK pin outputs a 60MHz clock. If R9 is short-circuited, the input ULPI clock mode is enabled, X1 can be removed, and the external 60MHz clock is input from the CLK pin.

6.2 HOST Application with VBUS Power Control

CH132 is used as a USB PHY for MCU or FPGA, 12 signal lines need to be connected. RESET# pin is an optional connection, default is dangling, if connected, it is recommended that the other driver is set to open-drain output. The XI and XO pins of the CH132 have built-in crystal oscillator capacitors, and the external one only needs crystal X1.If the MCU or FPGA can provide a 12MHz clock then You can remove

crystal X1 and change R3 to 0 (Note that the XI pin voltage is only 1.2V, or change to CLK clock input mode).MLCC capacitor C2 can be selected from 1uF to 10uF, and it is recommended to connect another 0.1uF in parallel.


The small CH132C is preferred in the figure, with both VDD33 and V5 using the same externally supplied 3.3V power supply as the MCU or FPGA.

For USB host applications that also require 5V power to VBUS, it is recommended to consider VBUS overcurrent protection, refer to the diagram below for optional CH217 or similar USB current-limiting power switch chip and control by MCU or FPGA to implement VBUS overcurrent protection. If the internal LDO of CH132 is enabled, it is recommended to replace C2 with two capacitors of 0.1uF and 10uF in parallel to avoid the 5V reduction affecting VDD33 and thus causing CH132 reset. In the figure, the internal LDO is not enabled in CH132.

Simple USB host application can also use 300mA~1A fuse resistor R1 instead of U5, R11, R21 in the figure.

For USB device applications, you can get 5V power from VBUS, refer to the following diagram to remove U5, R11, R21 and C11, and change R1 to 0 or insurance resistor, C4 is reduced to within 10uF according to USB specification. The three power supply schemes are as follows:

- ①Self-powered 3.3V scheme, without VBUS power, if you need to detect can also be VBUS through the $10K\Omega$ resistor into the MCU pins for detection;
- ②External LDO step-down scheme, through the external LDO VBUS down to 3.3V for MCU and CH132 use, refer to the following figure U4 step-down;
- ③Internal LDO step-down scheme, if the MCU power consumption is small, then it can also be unified by the CH132 internal LDO step-down power supply 3.3V, but C2 needs to be increased appropriately, and VBUS needs to add overvoltage protection devices.

