WH[®]

CH32L103 Datasheet

V1.7 https://wch-ic.com

Overview

CH32L103 is an industrial-grade low-power general-purpose microcontroller designed based on QingKe RISC-V core.CH32L103 built-in USB and PD PHY, support PDUSB, including USB Host and USB Device functions, USB PD and Type-C fast charging function, built-in low-power timer, provides 1 OPA, 3 CMPs, 4 USARTs, 2 I2Cs, 2 SPIs, 1 CAN, multiple timers, 12-bit ADC, 10-channel touchkey, etc.

Features

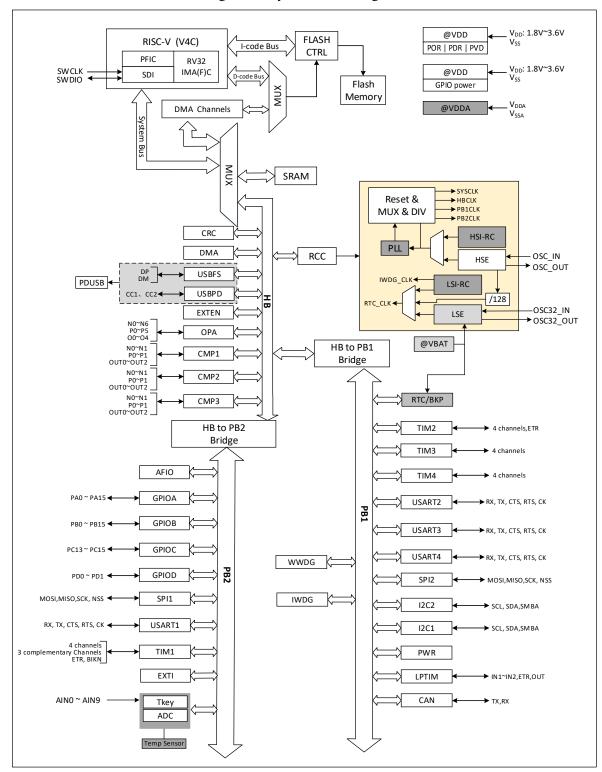
- Core
- QingKe 32-bit RISC-V4C core
- Support RV32IMAC instruction set and self-extending instructions
- Fast programmable interrupt controller + hardware interrupt stack
- Branch prediction, conflict handling mechanism
- Single-cycle multiplication, hardware division
- System frequency 96MHz
- Memory
- 20KB volatile data storage area SRAM
- 64KB program memory area CodeFlash
- 3328B System BootLoader storage area
- 256B system non-volatile configuration information memory area
- 256B user-defined information storage area
- Power management and low-power:
- System power supply V_{DD}: 3.3V
- Low-power modes: Sleep, Stop, Standby
- V_{BAT} independently powers RTC and backup registers
- Clock & Reset
- Built-in factory-tuned 8MHz RC oscillator
- Built-in RC oscillator of about 40KHz.
- Built-in PLL, optional CPU clock up to 96MHz.
- External support high-speed oscillator 3 \sim 25MHz.
- External support 32.768KHz low-speed oscillator
- Power-on/down reset, programmable voltage monitor
- RTC: 32-bit independent timer

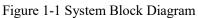
- 8-channel general-purpose DMA controller
- 8 channels, support ring buffer management
- Support TIMx/ADC/USART/I2C/SPI
- 3-group analog voltage comparator CMP:
- 2 input channels each, optional common reference voltage pin
- Output to I/O or internal direct trigger TIM2
- 1-group OPA/PGA/voltage comparator:
- Multiple input channels, selectable multi-step gain
- Multiple output channels, optional ADC pins
- 12-bit ADC
- Analogue input range: $V_{SSA} \sim V_{DDA}$
- 10-channel external signal + 3-channel internal signal channel
- On-chip temperature sensor
- 10-channel touchkey detection
- 16-bit low-power timer
- Multiple timers
- 1×16-bit advanced-control timers, with dead zone control and emergency brake; can offer PWM complementary output for motor control
- 2×16-bit general-purpose timers, provide input capture/output comparison/PWM
- 1×32-bit general-purpose timer
- 2 watchdog timers (independent watchdog and window watchdog)
- SysTick: 64-bit counter
- 4-group UART: Support LIN and ISO7816
- 2 I2C interface: Support SMBus/PMBus
- 2 SPI interface
- 1 CAN interface (2.0B active):

- Support CAN FD protocol
- USB 2.0 full-speed controller and PHY:
- Support USB Host and USB Device
- USB PD and Type C controller and PHY:
- Support DRP, Sink and Source
- Support PDUSB

- Fast GPIO port
- 37 I/O ports, support 16 external interrupts
- Security features: Chip unique ID
- Debug mode: 2-wire serial debug interface (SDI)
- Package: LQFP, QFN, QSOP, TSSOP

Resource		Model	C8T6	K8U6	G8R6	F8U6	F8P6			
Р	in Numbe	r	48	32	28	20	20			
FI	LASH (byt	e)	64K	64K	64K	64K	64K			
SI	RAM (byte	e)	20K	20K	20K	20K	20K			
GPI	O port nur	nber	37	31	26	19	16			
		ed-control (16-bit)	1	1	1	1	1			
	General-purpose TIM2, TIM3 (16-bit)		2	2	2	2	2			
Timer		l-purpose (32-bit)	1	1	1	1	1			
	Low-power timer (LPTIM)		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
	Wate	chdog		2	(WWDG + IW	DG)				
	SysTick (64-bit)				\checkmark					
	RTC			\checkmark						
	ADC		10+3	10+3	10+3	10+3	9+3			
	Tkey		10-channel	10-channel	10-channel	10-channel	9-channel			
	OPA		1	1	1	1	1			
	CMP		3	3	3	3	CMP1 CMP2			
	US	ART	4	4	4	4	4			
	S	PI	2	SPI1	2	2	SPI1			
	Ľ	2C	2	I2C1	2	2	I2C1			
	C	AN	1	1	1	1	1			
Communi cation interface	II4	USB Host Device	Host Device	Host Device	Host Device	Host Device	Device			
	Host Device USB PD Type-C		DRP Source Sink	DRP Source Sink Built-in Rd ⁽¹⁾	DRP Source Sink	DRP Source Sink Built-in Rd ⁽¹⁾	DRP Source Sink			
CPU	main frequ	iency			Max: 96MHz	1				
	Rated voltage				3.3V					
	ting tempe			Indus	trial-grade: -40°	°C~85°C				
	Package form			QFN32	QSOP28	QFN20	TSSOP20			
	Main applications and features			General-purpos e.	General-purpos e. Motor master	Motor master Pin optimized	General-purpose, Pin compatible			
	22110200		Pin compatible	vilt in Time C			hlo Del mult de			


Note: 1. CH32L103K8U6 and F8U6 have built-in Type-C specification-defined controllable Rd pull-down


resistors of about 5.1 k Ω .

Chapter 1 Specification Information

1.1 System Structure

The microcontroller is designed on the basis of the RISC-V instruction set, and its architecture integrates QingKe microprocessor core, arbitration unit, DMA module, SRAM storage and other components through multiple bus groups to achieve interaction. A general-purpose DMA controller is integrated to reduce the CPU load and improve access efficiency, and a multi-level clock management mechanism is applied to reduce the power consumption of peripherals. The following diagram shows the overall internal architecture of the series chip.

1.2 Memory Map

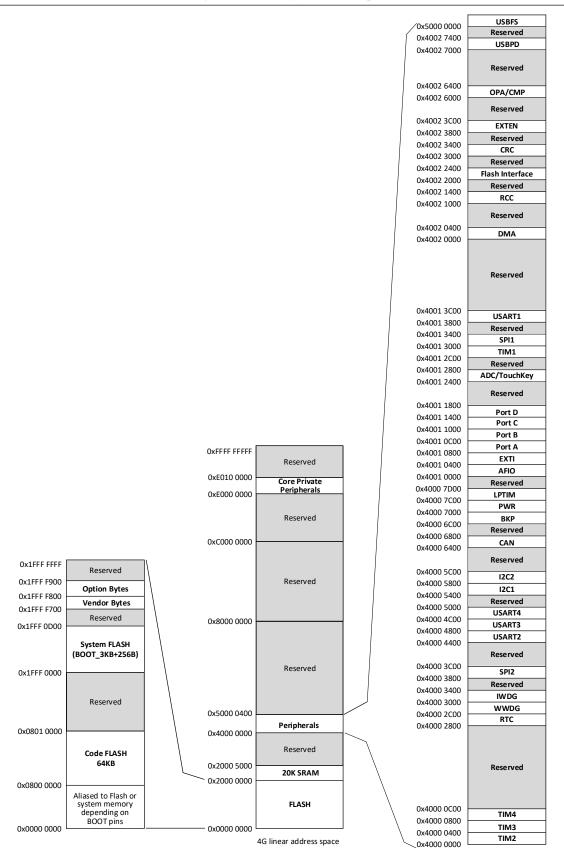
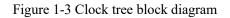
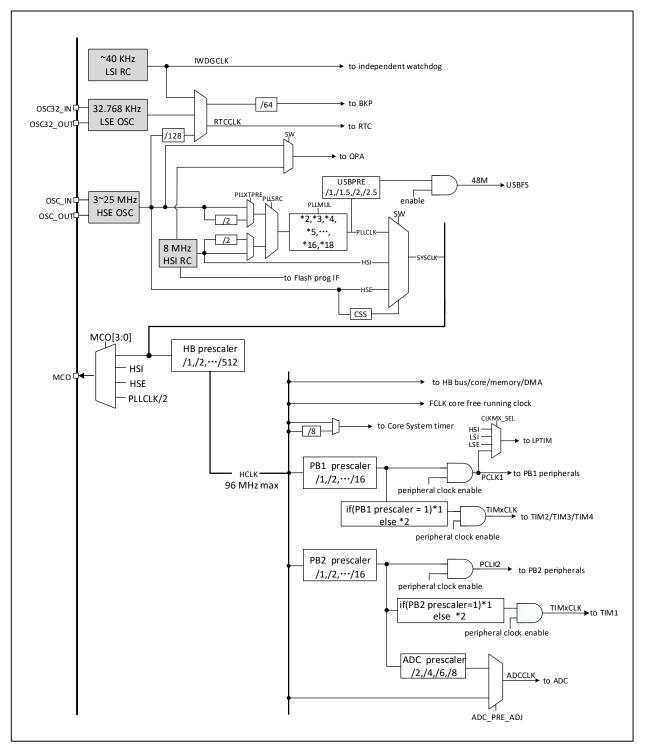




Figure 1-2 Memory address map

1.3 Clock Tree

4 groups of clock sources are introduced into the system: internal high frequency RC oscillator (HSI), internal low frequency RC oscillator (LSI), external high frequency oscillator (HSE), external low frequency oscillator (LSE). Among them, the low frequency clock source provides a clock reference for RTC and independent watchdogs. The high frequency clock source is directly or indirectly output to the system bus clock (SYSCLK) through PLL frequency doubling. the system clock is provided by each prescaler to provide HB domain, PB1 domain, PB2 domain peripheral control clock and sampling or interface output clock, and part of the module work needs to be provided directly by PLL clock.

1.4 Functional Description

1.4.1 QingKe RISC-V4C Processor

RISC-V4C supports the IMAC subset of the RISC-V instruction set. The processor is managed internally in a modular fashion and contains units such as a programmable fast interrupt controller (PFIC), memory protection, branch prediction mode and extended instruction support. Externally multiple buses are connected to external unit modules, enabling interaction between external function modules and the core.

The processor with its minimal instruction set, multiple operating modes, and modular custom extensions can be flexibly applied to different scenarios of microcontroller design, such as small area low-power embedded scenarios, high performance application operating system scenarios, etc.

- Support machine and user privileged modes
- Programmable Fast Interrupt Controller (PFIC)
- Multi-level hardware interrupt stack
- 2-wire serial debug interface (SDI)
- Standard memory protection design
- Static or dynamic branch prediction, efficient jumping, conflict detection mechanisms
- Custom extension instructions

1.4.2 On-chip Memory

Built-in 20K bytes SRAM, available for storing data, which will be lost after power down. The specific capacity should correspond to the chip model.

Built-in 64K bytes program flash memory storage area (Code FLASH), i.e. user area, for user's application program and constant data storage. The specific size of the area corresponds to the chip model.

Built-in 3328 bytes System FLASH (System FLASH), i.e. BOOT area, used for system boot program storage, built-in bootstrap loading program.

Built-in 256-byte system non-volatile configuration information storage area, used for vendor's configuration word storage, factory-cured, user cannot be modified.

Built-in 256-byte user-defined information storage area for user option byte storage.

At startup, one of three bootstrap modes can be selected via the bootstrap pins (BOOT0 and BOOT1):

- Bootstrap from program flash memory
- Boot from system memory
- Boot from internal SRAM

The bootstrap loading program is stored in the system memory and the contents of the program flash memory storage area can be reprogrammed via the USART2 and USB interfaces.

1.4.3 Power Supply Scheme

- $V_{DD} = 1.7 \sim 3.6$ V: Supplies power to the I/O pins and internal regulator.
- $V_{DDA} = 2.0 \sim 3.6V$: Supplies power to the analog portion of the high-frequency RC oscillator, ADC, temperature sensor, and PLL. During normal operation. V_{DDA} voltage must not be higher than V_{DD} voltage;

when using ADC, V_{DDA} must not be less than 2.4V.

• $V_{BAT} = 1.8 \sim 3.6V$: Optional backup power supply, When V_{DD} is turned off, power is supplied (via the internal power switcher) separately to the RTC, external low-frequency oscillator, and back-up registers.

1.4.4 Power Supply Detector

The chip integrates a power-on reset (POR)/power-off reset (PDR) circuit, which is always in a working state to ensure that the system works when the power supply is not less than 1.8V; when V_{DD} falls below the set threshold ($V_{POR/PDR}$), it puts the device in reset without the need for an external reset circuit.

In addition, the system has a programmable voltage monitor (PVD), which needs to be turned on by software to compare the voltage magnitude of the V_{DD} supply with the set threshold V_{PVD} . Turning on the corresponding edge interrupt of the PVD allows you to receive an interrupt notification when V_{DD} falls to the PVD threshold or rises to the PVD threshold. Refer to Chapter 3 for $V_{POR/PDR}$ and V_{PVD} values.

1.4.5 System Voltage Regulator LDO

After resetting, the system voltage regulator is automatically switched on. There are two modes of operation depending on the application mode.

- On mode: Normal running operation, providing stable core power.
- Low-power mode: Low-power operation of the regulator when the CPU is in Standby mode.
- Shutdown mode: The regulator is automatically switched to this mode when the CPU enters the Standby mode, the regulator output is high resistance, the power supply to the core circuit is cut off, and the regulator is in the zero-consumption state.

The regulator is always in on mode after reset, and is turned off in standby mode in shutdown mode, when it is high resistance output.

1.4.6 Low-power Mode

The system supports 3 low-power modes, which can achieve the best balance under the conditions of low power consumption, short start-up time and multiple wake-up events.

• Sleep mode (SLEEP)

In sleep mode, only the CPU clock stops, but all peripheral clocks are powered normally and the peripherals are in working state. This mode is the shallowest low-power mode, but can achieve the fastest wake-up.

Exit condition: Any interruption or wake-up event.

• Stop mode (STOP)

This mode FLASH enters the low-power mode or power-off state, and the RC oscillator and HSE crystal oscillator of PLL and HSI are turned off. The stop mode can achieve the lowest power consumption while keeping the contents of SRAM and registers intact.

The stop mode is divided into 4 cases: Stop Mode 1, Stop Mode 2, Stop Mode 3 and Stop Mode 4. For detailed information, please refer to the Low-power Mode related chapter in the CH32L103RM manual.

Exit condition: Any external interrupt / event (EXTI signal), external reset signal on NRST, IWDG reset, in which EXTI signal includes one of 37 external I/O ports, PVD output, RTC alarm clock, USB wake-up signal, USBPD wake-up signal, CMP wake-up signal, LPTIM wake-up signal and so on.

• Standby mode (STANDBY)

In this mode, the main LDO of the system is turned off, the wake-up circuit is powered by the low-power LDO, all other digital circuits are powered off, and the FLASH is in a power-off state. The wake-up system from standby mode will reset and SBF (PWR_CSR) will be set. After waking up, the SBF status is queried to know the low-power mode before wake-up, and the SBF is cleared by the CSBF (PWR_CR) bit. In standby mode, the contents of 20KB's SRAM can be maintained (depending on the planned configuration before going to bed), and the contents of the backup register can be retained.

Exit conditions: EXT10~EXT17 any external event (excluding interrupts), external reset signal on NRST, IWDG reset, in which EXTI signal includes one of 37 external I/O ports, PVD output, RTC alarm clock, etc.

1.4.7 CRC Calculation Unit

The CRC (Cyclic Redundancy Check) Calculation Unit generates a CRC code from a 32-bit data word using a fixed polynomial generator. In numerous applications, CRC-based techniques are used to verify the consistency of data transmission or storage. Within the scope of the EN/IEC 60335-1 standard, which provides a means of detecting errors in flash memory, the CRC calculation unit can be used to compute the signature of software in real time and compare it with the signature generated at the time of linking and generating that software.

1.4.8 Programmable Fast Interrupt Controller (PFIC)

The chip has a built-in Programmable Fast Interrupt Controller (PFIC) that supports up to 255 interrupt vectors, providing flexible interrupt management with minimal interrupt latency. Currently the chip manages 4 core private interrupts and 52 peripheral interrupt management, with other interrupt sources reserved. the PFIC registers are all accessible in both user and machine privileged modes.

- 2 individually maskable interrupts
- Provide one non-maskable interrupt NMI
- Support hardware interrupt stack (HPE) without instruction overhead
- Provide 4 table-free interrupts (VTF) for faster access to interrupt service routines
- Vector table support address or instruction mode
- Interrupt nesting depth can be configured up to 2 levels
- Support interrupt tail linking

1.4.9 External Interrupt/Event Controller (EXTI)

The external interrupt/event controller contains a total of 22 edge detectors for generating interrupt/event requests. Each interrupt line can be configured independently of its trigger event (rising or falling edge or double edge) and can be individually masked; a pending register maintains the status of all interrupt requests. Up to 37 general purpose I/O ports are optionally connected to 16 external interrupt lines.

1.4.10 General DMA Controller

The system has a built-in general-purpose DMA controller that manages 8 channels to flexibly handle high-speed data transfers between memory to memory, peripheral to memory and memory to peripheral, supporting the ring buffer approach. Each channel has dedicated hardware DMA request logic to support one or more peripheral access requests to memory, with configurable access priority, transfer length, source and destination addresses for transfers, etc.

DMA is used for the main peripherals including: General-purpose/advanced-control timers TIMx, ADC, USART,

I2C, SPI.

USB and USB PD have additional dedicated independent DMA channels.

Note: DMA and CPU access to system SRAM after arbitration.

1.4.11 Clock and Boot

The system clock source HSI is on by default. After no clock is configured or reset, the RC oscillator of the internal 8MHz is used as the default CPU clock, and then the external 3~25MHz clock or PLL clock can be selected. When clock safe mode is turned on, if HSE is used as the system clock (directly or indirectly), if an external clock failure is detected, the system clock will automatically switch to the internal RC oscillator, while HSE and PLL will automatically turn off; for low-power mode with clock off, the system will also automatically switch to the internal RC oscillator after waking up. If the clock interrupt is enabled, the software can receive the corresponding interrupt.

Multiple prescalers are used to configure the frequency of HB, high-speed PB (PB2) and low-speed PB (PB1) areas provide each peripheral clock, the highest frequency 96MHz, refer to the clock tree block diagram of figure 1-3.

1.4.12 RTC and Backup Register

The RTC and the backup register are in the backup power supply area within the system, which is powered by the V_{DD} when the V_{DD} is effective, and automatically switched to the power supply by the V_{BAT} pin when the V_{DD} is invalid.

The RTC real-time clock is a set of 32-bit programmable counters with a time base that supports 20-bit prescaling and is used for long-time measurement. The clock reference comes from a high-speed external clock division (HSE/128), an external crystal low frequency oscillator (LSE), or an internal low-power RC oscillator (LSI). Among them, there is also a backup power supply area in LSE, so when LSE is selected as RTC, the setting and time of RTC can remain unchanged after the system resets or wakes up from Standby mode.

The backup register contains 10 16-bit registers, which can be used to store 20 bytes of user application data. This data can be maintained after waking up on standby, or when the system is reset or the power is reset. When the intrusion detection function is turned on, once the intrusion detection signal is valid, all contents in the backup register will be cleared.

1.4.13 Analog-to-digital Converter (ADC) and Touchkey Capacitance Detection (TKey)

The chip has a built-in 12-bit ADC that provides up to 10 external channels and 3 internal channel samples with programmable channel sampling times for single, continuous, sweep or intermittent conversion. Provides analog watchdog function allows very precise monitoring of one or more selected channels for monitoring channel signal voltages, provides configurable analog watchdog reset function to reset the system when monitored voltage exceeds a threshold. Supports external event-triggered transitions. Trigger sources include internal signals from on-chip timers and external pins. Supports operation using DMA.

The internal channels of the ADC are ADC_IN16 to ADC_IN18. The temperature sensor is internally connected to the IN16 input channel for converting the sensor output to a digital value; the internal reference voltage is connected to the IN17 input channel; and VDDA/2 is connected to the IN18 input channel.

The touchkey capacitance detection unit provides up to 10 detection channels and reuses the external channels of the ADC module. The detection result is converted into the output result by the ADC module, and the touchkey state is identified by the user software.

1.4.14 Timer and Watchdog

• Advanced-control timer (TIM1)

The advanced-control timer is a 16-bit automatic load increment / decrement counter with a 16-bit programmable prescaler. In addition to the complete general timer function, it can be regarded as a three-phase PWM generator assigned to 6 channels, with a complementary PWM output function with dead-zone insertion, allowing the timer to be updated after a specified number of counter cycles for repeated counting cycles, braking functions, etc. Advanced control timers have the same functions as general timers and have the same internal structure, so advanced control timers can cooperate with other TIM timers through timer linking function to provide synchronization or event linking functions.

• General-purpose timer (TIM2, TIM3, TIM4)

The general-purpose timer is two 16-bit (TIM2, TIM3) and 1 32-bit (TIM4) autoload add / decrement counters with a programmable 16-bit prescaler and four independent channels, each of which supports input capture, output comparison, PWM generation, and single pulse mode output. It can also work with advanced control timers through the timer linking function to provide synchronization or event linking functions. In debug mode, counters can be frozen while PWM outputs are disabled, thus cutting off the switches controlled by these outputs. Any general timer can be used to generate PWM output. Each timer has an independent DMA request mechanism. These timers can also process the signal of the incremental encoder and the digital output of 1 to 3 Hall sensors.

• Independent watchdog

Independent watchdog is a free-running 12-bit decreasing counter that supports 7 frequency division coefficients. The clock is provided by an internally independent RC oscillator (LSI) of about 40KHz. IWDG works completely independently of the main program, so it is used to reset the entire system in the event of a problem, or to provide timeout management for applications as a free timer. The option byte can be configured as a software or hardware startup watchdog. Counters can be frozen in debug mode.

• Window watchdog

The window watchdog is a 7-bit decrement counter and can be set to run freely. Can be used to reset the entire system when a problem occurs. It is driven by the main clock and has the function of early warning interrupt; in debug mode, the counter can be frozen.

• System time base timer

QingKe microprocessor core comes with a 64-bit optional increment or decrement counter, which is used to generate SYSTICK exceptions (exception number: 12), which can be specially used in real-time operating systems to provide "heartbeat" rhythm for the system, or can be used as a standard 64-bit counter. It has automatic reload function and programmable clock source.

1.4.15 Low-power Timer (LPTIM)

The low-power timer is a 16-bit auto-loading incremental counter with a 3-bit programmable prescaler. It can be triggered by either software or hardware inputs and supports PWM outputs. The Low-power Timer wakes up the system from a low-power mode and realizes a "time-out function" with very low-power consumption.

1.4.16 Universal Synchronous/Asynchronous Receiver Transmitter (USART)

The chip provides 4 sets of universal synchronous/asynchronous transceivers. It supports full duplex asynchronous serial communication, synchronous unidirectional communication as well as half duplex single line communication, also LIN (Local Interconnect Network), ISO7816 compatible smart card protocol and IrDA SIR ENDEC transmission codec specification, as well as modem (CTS/RTS hardware flow control) operation, and also supports multi-processor communication. It uses a fractional baud rate generator system and supports continuous communication by DMA operation.

1.4.17 Serial Peripheral Interface (SPI)

The chip provides 2 serial peripheral SPI interface, support master or slave operation, dynamic switching. Support multi-master mode, full-duplex or half-duplex synchronous transmission, support basic SD card and MMC mode. Programmable clock polarity and phase, data bit width provides 8- or 16-bit selection, hardware CRC generation/check for reliable communication, and continuous communication support for DMA operation.

1.4.18 I2C Bus

The chip provides 2 I2C bus interface, capable of working in multi-master or slave mode, performing all I2C bus specific timing, protocols, arbitration, etc. Both standard and fast communication speeds are supported and it is also compatible with SMBus 2.0.

The I2C interface provides 7-bit or 10-bit addressing, and supports dual slave addressing in 7-bit Slave mode. It integrates built-in hardware CRC generator/checker. It also supports DMA operation and supports SMBus bus version 2.0/PMBus bus.

1.4.19 Controller Area Network (CAN)

The chip provides 1 group CAN interface, compatible with specification 2.0A and 2.0B (active), baud rate up to 1Mbits/s, supports time-triggered communication function, supports CAN FD protocol, the biggest difference between traditional CAN is that the rate is variable, and the data bit rate is up to 8Mbps. it can receive and send standard frames with 11-bit identifiers, and also can receive and send extended frames with 29-bit identifiers. It can receive and send standard frames with 11-bit identifiers and extended frames with 29-bit identifiers. It has three transmitter mailboxes and two 3-level deep receive FIFOs.

1.4.20 Universal Serial Bus USB2.0 Full-speed Host/Device Controller (USBFS)

USB2.0 Full-speed Host Controller and Device Controller (USBFS) following the USB2.0 Full-speed standard and supporting the BC charging protocol. Provides 8 configurable USB device endpoints and a set of host endpoints. Supports control/lot/sync/interrupt transfers, double buffer mechanism, USB bus hang/resume operation and provides standby/wakeup functions. 48MHz clock dedicated to the USBFS module is generated directly from the internal high-speed clock (HSI).

1.4.21 USB PD and Type-C Controller (USB PD)

Built-in USB Power Delivery controller and PD transceiver PHY, support USB Type-C master-slave detection, automatic BMC codec and CRC, hardware edge control, support USB PD2.0 and PD3.0 power delivery control, support fast charging, support UFP/PD powered end Sink and DFP/PD powered end Source applications, DRP

application as well as dynamic switching, some models have built-in controllable Rd pull-down resistor and support PDUSB.

With the addition of Type-C/PD high-voltage interface chip CH211, 28V direct power supply, 28V tolerant voltage of CC pin and built-in controllable Rd pull-down resistor 5K1 defined by Type-C specification can be realized.

1.4.22 General-purpose Input / Output (GPIO)

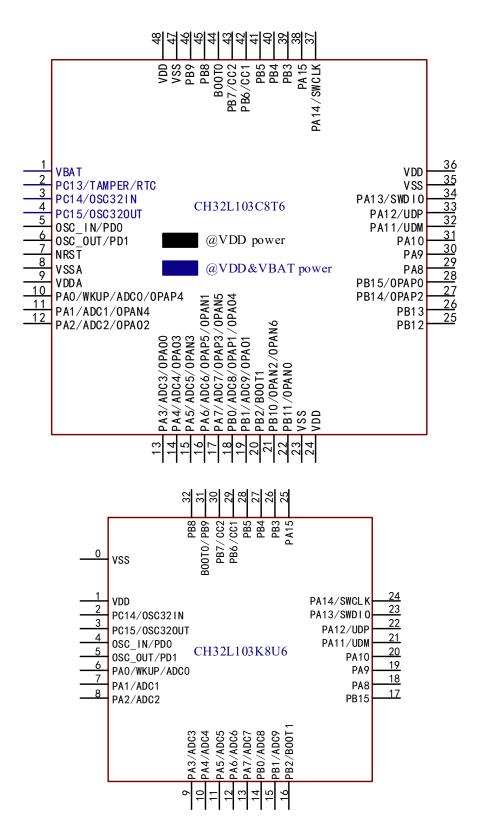
The system provides 4 sets of GPIO ports with a total of 37 GPIO pins. Each pin can be configured by software to output (push-pull or open-drain), input (with or without pull-up and pull-down), or reuse peripheral function ports. Most GPIO pins are shared with digital or analog multiplexing peripherals. Except for the ports with analog input function, all GPIO pins have greater current drive capability. Provides a locking mechanism to freeze the IO configuration to avoid accidental writing to the I/O register.

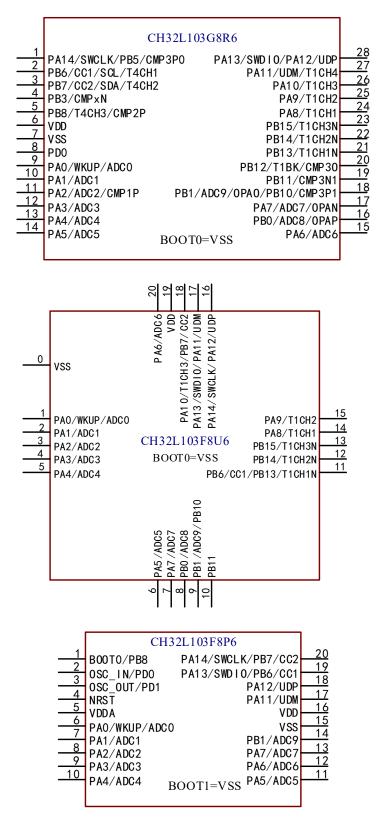
Most of the IO pin power supply in the system is provided by VDD. By changing the VDD power supply, the IO pin output level will be changed to adapt to the external communication interface level. Please refer to the pin description for the specific pin.

1.4.23 Operational Amplifier/Comparator (OPA)

The chip has a built-in 1-group op-amp (OPA), which can also be used as a voltage comparator. Its input can be selected for multiple channels by changing the configuration, including amplification selection for the programmable gain op-amp (PGA), and its output can be selected for 2 channels by changing the configuration, internally associated to ADC channels. External analogue small signal amplification is supported for feeding into the ADC for small signal ADC conversion.

1.4.24 Voltage Comparator (CMP)


The chip has 3 built-in rail-to-rail analog voltage comparators with optional hysteresis characteristics. The voltage comparison results are triggered by the GPIO output or internally directly into the input channels $CH1 \sim CH3$ of the TIM2.


1.4.25 2-wire SDI Serial Debug Interface

The core comes with a 2-wire serial debug interface (SDI), including SWDIO and SWCLK pins. The default debug interface pin function is turned on after the system is powered on or reset, and the SDI can be turned off according to the need after the main program is running.

Chapter 2 Pinouts and Pin Definition

2.1 Pinouts

Note: The alternate functions in the pin diagram are abbreviated.

```
Example: ADC: ADC_ (ADC0: ADC_IN0)
T: TIME_ (T1CH3:TIM1_CH3, T1CH1N: TIM1_CH1N, T1BK: TIM1_BKIN)
OPA: OPA_ (OPAP4: OPA_P4, OPAN4: OPA_N4, OPAO2: OPA_O2)
UDP: USBDP
```

UDM: USBDM

2.2 Pin Description

Note that the pin function descriptions in the table below are for all functions and do not refer to specific chip models. Peripheral resources may vary from model to model, so please check the availability of this function against the chip model resource table before viewing.

	Pin 1	No.							
QFN20	QSOP28	QFN32	LQFP48	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹⁰⁾
-	-	-	1	V_{BAT}	Р	-	V _{BAT}		
-	-	-	2	PC13- TAMPER-RTC ⁽ 2)	I/O	-	PC13 ⁽³⁾	TAMPER RTC	
-	-	2	3	PC14- OSC32_IN ⁽²⁾	I/O/A	-	PC14 ⁽³⁾	OSC32_IN	
-	-	3	4	PC15- OSC32_OUT ⁽²⁾	I/O/A		PC15 ⁽³⁾	OSC32_OUT	
-	8	4	5	OSC_IN	I/O/A	-	OSC_IN		PD0 ⁽⁴⁾ USART3_TX_3 USART3_RX_2 CAN_RX_3
-	-	5	6	OSC_OUT	I/O/A	-	OSC_OUT		PD1 ⁽⁴⁾ USART3_TX_2 USART3_RX_3 CAN_TX_3
-	-	-	7	NRST	Ι	-	NRST		
-	-	-	8	V _{SSA}	Р	-	V _{SSA}		
-	-	-	9	V _{DDA}	Р	-	V _{DDA}		
1	9	6	10	PA0-WKUP	I/O/A	_	PA0	WKUP ADC_IN0 TIM2_CH1_ET R USART2_CTS OPA_P4	TIM2_CH1_ETR _2 USART2_CTS_2 USART2_CTS_3
2	10	7	11	PA1	I/O/A	-	PA1	ADC_IN1 TIM2_CH2 USART2_RTS OPA_N4	TIM1_CH1_2 TIM1_CH1_3 TIM2_CH2_2 TIM1_CH2N_5 USART2_RTS_2 USART2_RTS_3
3	11	8	12	PA2	I/O/A	-	PA2	ADC_IN2 CMP1_P0	TIM1_CH4_4 TIM2_CH2_4

Table 2-1 QFN20/QSOP28/QFN32/LQFP48 Pin definitions

	Pin No.									
QFN20	QSOP28	QFN32	LQFP48	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹⁰⁾	
								OPA_O2 TIM2_CH3 USART2_TX	TIM2_CH2_5 TIM2_CH3_1 USART1_CTS_2	
4	12	9	13	PA3	I/O/A	-	PA3	ADC_IN3 OPA_O0 TIM2_CH4 USART2_RX	TIM1_ETR_3 TIM1_CH4_5 TIM2_CH1_ETR _4 TIM2_CH4_1 USART1_CK_2	
5	13	10	14	PA4	I/O/A	-	PA4	ADC_IN4 OPA_O3 USART2_CK SPI1_NSS	TIM2_CH4_7 USART1_TX_2 USART1_RX_3 USART2_CK_2 USART2_CK_3	
6	14	11	15	PA5	I/O/A	-	PA5	ADC_IN5 SPI1_SCK OPA_N3	TIM2_CH3_7 USART1_TX_3 USART1_RX_2 USART4_TX_1	
20	15	12	16	PA6	I/O/A	-	PA6	ADC_IN6 TIM3_CH1 SPI1_MISO OPA_N1 OPA_P5	TIM1_BKIN_1 TIM2_CH4_4 TIM2_CH4_5 USART1_CK_3 USART1_CK_4 USART4_CK_1	
7	17	13	17	PA7	I/O/A	-	PA7	SPI1_MOSI ADC_IN7 TIM3_CH2 OPA_N5 OPA_P3	TIM1_CH1N_1 TIM1_CH2_2 TIM1_CH2_3 USART4_CTS_1	
8	16	14	18	PB0	I/O/A	-	PB0	ADC_IN8 TIM3_CH3 USART4_TX CMP1_OUT0 OPA_P1 OPA_O4	TIM1_CH2N_1 TIM1_CH2N_2 TIM1_CH2N_3 TIM3_CH3_1	
9	18	15	19	PB1 ⁽⁷⁾⁽⁸⁾	I/O/A	-	PB1	ADC_IN9 TIM3_CH4 USART4_RX CMP1_N0 OPA_01	TIM1_CH1_5 TIM1_CH4_2 TIM1_CH4_3 TIM1_CH2N_4 TIM1_CH3N_1	

	Pin	No.							
QFN20	QSOP28	QFN32	LQFP48	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹⁰⁾
									TIM3_CH4_1
-	-	16	20	PB2 ⁽⁵⁾	I/O/A	FT	PB2 BOOT1 ⁽⁵⁾	USART4_CK CMP1_P1	LPT_OUT_1
9	18	-	21	PB10 ⁽⁷⁾⁽⁸⁾	I/O/A	FT	PB10	USART3_TX I2C2_SCL CMP1_OUT1 CMP3_P1 OPA_N2 OPA_N6	TIM4_CH1_1 TIM2_CH3_2 TIM2_CH3_3
10	19	-	22	PB11	I/O/A	FT	PB11	CMP2_OUT1 CMP3_N1 OPA_N0 USART3_RX I2C2_SDA	TIM1_CH1N_2 TIM1_CH1N_3 TIM2_CH4_2 TIM2_CH4_3 TIM4_CH2_1 USART1_TX_4 I2C1_SDA_3
0	7	0	23	V _{SS}	Р	-	V_{SS}		
19	6	1	24	V _{DD}	Р	-	V_{DD}		
-	20	-	25	PB12	I/O/A	FT	PB12	CMP3_OUT1 TIM1_BKIN LPT_IN1 USART3_CK I2C2_SMBA SPI2_NSS	TIM1_CH3_4 TIM2_CH3_4 TIM2_CH3_5 USART1_TX_5 USART3_CK_2 USART3_CK_3 SPI1_NSS_3
11	21	-	26	PB13 ⁽⁸⁾	I/O	FT	PB13	TIM1_CH1N LPT_IN2 USART3_CTS SPI2_SCK	USART3_CTS_2 USART3_CTS_3
12	22	-	27	PB14	I/O/A	FT	PB14	TIM1_CH2N LPT_ETR USART3_RTS SPI2_MISO OPA_P2	USART3_RTS_2 USART3_RTS_3

	Pin	No.							
QFN20	QSOP28	QFN32	LQFP48	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹⁰⁾
13	23	17	28	PB15	I/O/A	FT	PB15	TIM1_CH3N LPT_OUT SPI2_MOSI OPA_P0	
14	24	18	29	PA8	I/O	FT	PA8	MCO TIM1_CH1 USART1_CK	TIM1_CH1_1 USART1_CK_1
15	25	19	30	PA9	I/O	FT	PA9	TIM1_CH2 USART1_TX	TIM1_CH2_1
18	26	20	31	PA10 ⁽⁸⁾	I/O	FT	PA10	TIM1_CH3 USART1_RX	TIM1_CH3_1
17	27	21	32	PA11 ⁽⁸⁾	I/O/A	FT	PA11	TIM1_CH4 USART1_CTS USBDM CAN RX	TIM1_CH4_1 USART1_CTS_1 USART2_TX_2 USART2_RX_3
16	28	22	33	PA12 ⁽⁷⁾⁽⁸⁾	I/O/A	FT	PA12	USART1_RTS USBDP CAN_TX TIM1_ETR	USART1_RTS_1 TIM1_ETR_1 TIM1_BKIN_4 TIM1_BKIN_5 TIM2_CH1_ETR _5 TIM2_CH1_ETR _7 USART1_RX_5 USART2_TX_3 USART2_RX_2 I2C1_SDA_2 SPI1_NSS_2
17		23	34	PA13 ⁽⁷⁾⁽⁸⁾	I/O	FT	SWDIO		TIM1_ETR_5 TIM1_BKIN_2 TIM1_BKIN_3 USART1_RTS_2 USART1_RTS_4 I2C1_SCL_2
-	-		35	V _{SS}	Р	-	V _{SS}		
-	-		36	V _{DD}	Р	-	V _{DD}		
16	1	24	37	PA14 ⁽⁷⁾⁽⁸⁾	I/O	FT	SWCLK		TIM1_CH3_2 TIM1_CH3_3 TIM1_CH1N_4 TIM1_CH1N_5

	Pin	No.							
QFN20	QSOP28	QFN32	LQFP48	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹⁰⁾
									USART1_CTS_4
-	-	25	38	PA15	I/O	FT	PA15		TIM2_CH1_ETR _1 TIM2_CH1_ETR _3 USART4_RTS_1 SPI1_NSS_1
-	4	26	39	PB3	I/O/A	FT	PB3	CMP1_N1 CMP2_N0 CMP3_N0 USART4_CTS	TIM2_CH2_1 TIM2_CH2_3 SPI1_SCK_1
-	-	27	40	PB4	I/O/A	FT	PB4	CMP3_OUT0 USART4_RTS	TIM3_CH1_1 SPI1_MISO_1
-	1	28	41	PB5 ⁽⁷⁾	I/O/A	FT	PB5	I2C1_SMBA CMP2_OUT0 CMP3_P0	LPT_IN1_1 TIM3_CH2_1 USART4_RX_1 I2C1_SMBA_2 I2C1_SMBA_3 SPI1_MOSI_1
11	2	29	42	PB6 ⁽⁸⁾	I/O/A	FT	PB6	TIM4_CH1 I2C1_SCL CC1 CMP2_P1	LPT_ETR_1 USART1_TX_1 USART1_CK_5 SPI1_SCK_2 SPI1_SCK_3 TIM1_ETR_2 TIM1_ETR_4 TIM1_CH3_5
18	3	30	43	PB7 ⁽⁸⁾	I/O/A	FT	PB7	TIM4_CH2 I2C1_SDA CC2 CMP2_N1	LPT_IN2_1 USART1_RX_1 USART1_CTS_3 USART1_CTS_5 SPI1_MOSI_2 SPI1_MOSI_3 TIM1_CH1_4 TIM1_CH3N_5
-	-	31	44	BOOT0 ⁽⁶⁾	Ι	-	BOOT0		
-	5	32	45	PB8	I/O/A	FT	PB8	TIM4_CH3 CMP2_P0	TIM4_CH3_1 USART1_RTS_3 USART1_RTS_5 SPI1_MISO_2

	Pin	No.							
QFN20	QSOP28	QFN32	LQFP48	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹⁰⁾
									SPI1_MISO_3
									CAN_RX_2
									TIM1_CH2_4
									TIM1_CH2_5
									TIM2_CH2_7
									TIM4_CH4_1
									USART1_RX_4
									I2C1_SCL_3
-	-	31	46	PB9 ⁽⁶⁾	I/O/A	FT	PB9	TIM4_CH4	CAN_TX_2
									TIM1_CH3N_2
									TIM1_CH3N_3
									TIM1_CH3N_4
-	-	-	47	V_{SS}	Р	-	V_{SS}		
-	-	-	48	V_{DD}	Р	-	V_{DD}		

Table 2-2 TSSOP20 Pin definitions

Pin No. 020D50	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹²⁾
2	OSC_IN	I/O/A	-	OSC_IN		PD0 ⁽⁴⁾ USART3_TX_3 USART3_RX_2 CAN_RX_3
3	OSC_OUT	I/O/A	-	OSC_OUT		PD1 ⁽⁴⁾ USART3_TX_2 USART3_RX_3 CAN_TX_3
4	NRST	Ι	-	NRST		
5	V _{DDA}	Р	-	V _{DDA}		
6	PA0-WKUP	I/O/A	-	PAO	WKUP ADC_IN0 TIM2_CH1_ETR USART2_CTS OPA_P4	TIM2_CH1_ETR_2 USART2_CTS_2 USART2_CTS_3
7	PA1	I/O/A	-	PA1	ADC_IN1 TIM2_CH2 USART2_RTS OPA_N4	TIM1_CH1_2 TIM1_CH1_3 TIM2_CH2_2 TIM1_CH2N_5

Pin No. 02dOSSL	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹²⁾
						USART2_RTS_2 USART2_RTS_3
8	PA2	I/O/A	-	PA2	ADC_IN2 CMP1_P0 OPA_O2 TIM2_CH3 USART2 TX	TIM1_CH4_4 TIM2_CH2_4 TIM2_CH2_5 TIM2_CH3_1 USART1_CTS_2
9	PA3	I/O/A	-	PA3	ADC_IN3 OPA_O0 TIM2_CH4 USART2_RX	TIM1_ETR_3 TIM1_CH4_5 TIM2_CH1_ETR_4 TIM2_CH4_1 USART1_CK_2
10	PA4	I/O/A	-	PA4	ADC_IN4 OPA_O3 USART2_CK SPI1_NSS	TIM2_CH4_7 USART1_TX_2 USART1_RX_3 USART2_CK_2 USART2_CK_3
11	PA5	I/O/A	-	PA5	ADC_IN5 SPI1_SCK OPA_N3	TIM2_CH3_7 USART1_TX_3 USART1_RX_2 USART4_TX_1
12	PA6	I/O/A	-	PA6	ADC_IN6 TIM3_CH1 SPI1_MISO OPA_N1 OPA_P5	TIM1_BKIN_1 TIM2_CH4_4 TIM2_CH4_5 USART1_CK_3 USART1_CK_4 USART4_CK_1
13	PA7	I/O/A	-	PA7	SPI1_MOSI ADC_IN7 TIM3_CH2 OPA_N5 OPA_P3	TIM1_CH1N_1 TIM1_CH2_2 TIM1_CH2_3 USART4_CTS_1
14	PB1	I/O/A	-	PB1	ADC_IN9 TIM3_CH4 USART4_RX CMP1_N0 OPA_O1	TIM1_CH1_5 TIM1_CH4_2 TIM1_CH4_3 TIM1_CH2N_4 TIM1_CH3N_1 TIM3_CH4_1
15	V _{SS}	Р	-	V _{SS}		

Pin No. LSSOP20	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹²⁾
16	V_{DD}	Р	-	V _{DD}		
17	PA11	I/O/A	FT	PA11	TIM1_CH4 USART1_CTS USBDM CAN_RX	TIM1_CH4_1 USART1_CTS_1 USART2_TX_2 USART2_RX_3
18	PA12	I/O/A	FT	PA12	USART1_RTS USBDP CAN_TX TIM1_ETR	USART1_RTS_1 TIM1_ETR_1 TIM1_BKIN_4 TIM1_BKIN_5 TIM2_CH1_ETR_5 TIM2_CH1_ETR_7 USART1_RX_5 USART2_TX_3 USART2_RX_2 I2C1_SDA_2 SPI1_NSS_2
19	PA13 ⁽⁹⁾	I/O	FT	SWDIO		TIM1_ETR_5 TIM1_BKIN_2 TIM1_BKIN_3 USART1_RTS_2 USART1_RTS_4 I2C1_SCL_2
20	PA14 ⁽⁹⁾	I/O	FT	SWCLK		TIM1_CH3_2 TIM1_CH3_3 TIM1_CH1N_4 TIM1_CH1N_5 USART1_CTS_4
19	PB6 ⁽⁹⁾	I/O/A	FT	PB6	TIM4_CH1 I2C1_SCL CC1 CMP2_P1	LPT_ETR_1 USART1_TX_1 USART1_CK_5 SPI1_SCK_2 SPI1_SCK_3 TIM1_ETR_2 TIM1_ETR_4 TIM1_CH3_5
20	PB7 ⁽⁹⁾	I/O/A	FT	PB7	TIM4_CH2 I2C1_SDA CC2 CMP2_N1	LPT_IN2_1 USART1_RX_1 USART1_CTS_3 USART1_CTS_5

Pin No. 12SOP20	Pin name	Pin type ⁽¹⁾	I/O level	Main function (after reset)	Default alternate function	Remapping function ⁽¹²⁾
						SPI1_MOSI_2
						SPI1_MOSI_3
						TIM1_CH1_4
						TIM1_CH3N_5
	BOOT0 ⁽⁶⁾	Ι	-	BOOT0		
						TIM4_CH3_1
						USART1_RTS_3
						USART1_RTS_5
1					TIM4 CU12	SPI1_MISO_2
1	PB8 ⁽⁶⁾	I/O/A	FT	PB8	TIM4_CH3	SPI1_MISO_3
					CMP2_P0	CAN_RX_2
						TIM1_CH2_4
						TIM1_CH2_5
						TIM2_CH2_7

Note 1: Explanation of table abbreviations:

I = *TTL/CMOS* level Schmitt input; *O* = *CMOS* level tri-state output;

A = analog signal input or output; P = power supply; FT = tolerant 5V;

Note 2: Both V_{DD} and V_{BAT} can be connected with an internal analog switch to supply power to the backup area and the pins PC13, PC14 and PC15. This analog switch can only pass a limited current (3mA). When powered by V_{DD} , PC14 and PC15 can be used for GPIO or LSE pins, and PC13 can be used as a general-purpose I/O port, TAMPER pin, RTC calibration clock, RTC alarm clock or second output; PC13, PC14 and PC15 can only work in 2MHz mode when they are used as GPIO output pins, and the maximum driving load is 30pF, and they cannot be used as current sources (such as driving LEDs). When the power is supplied by V_{BAT} , PC14 and PC15 can only be used for LSE pin, and PC13 can be used as TAMPER pin, RTC alarm clock or second output.

Note 3: these pins are in the main function state when the backup domain is powered on for the first time, and even if they are reset, the state of these pins is controlled by the backup domain register (these registers will not be reset by the master reset system). For specific information on how to control these IO ports, please refer to the relevant sections of the battery backup domain and BKP registers in the CH32L103RM manual.

Note 4: For the CH32L103C8T6 chip, pin 5 and pin 6 are configured as OSC_IN and OSC_OUT function pins by default after chip reset, and the software can reset these two pins to PD0 and PD1 functions; for the CH32L103K8U6 chip, pin 4 and pin 5 are configured as OSC_IN and OSC_OUT function pins by default after chip reset. The software can reset these two pins to PD0 and PD1 functions; For the CH32L103G8R6 chip, pin 8 is configured as the OSC_IN function pin by default after chip reset, and the software can reset these two pins to PD0 function; for the CH32L103F8P6 chip, pin 2 and pin 3 are configured as the OSC_IN and OSC_OUT functions. For more detailed information, please refer to the Multiplexed Function I/O section and the Debug Setup section of

the CH32L103RM manual.

Note 5: BOOT0 pin will be pulled down to the GND internally. The BOOT0 pin leads out, but the BOOT1/PB2 pin does not lead out of the chip, the internal BOOT1/PB2 pin will be pulled down to the GND. If you enter the low-power mode to configure the IO port state, it is recommended that the BOOT1/PB2 pin use the input drop-down mode to prevent additional current generation.

Note 6: For CH32L103K8U6 chips, BOOT0 and PB9 pins are short sealed inside the chip, and PB9 pins no longer support voltage 5V; for CH32L103F8P6 chips, BOOT0 and PB8 pins are short sealed inside the chip, and PB8 pins no longer support voltage 5V. It is recommended to connect an external 4.7K pull-down resistor to ensure that the BOOT0 is low during power-up in order to enter the program flash memory bootstrap mode. After normal operation, PB9, PB3 and PB8 pins can be used for output as needed.

Note 7: For the CH32L103G8R6 chip, the PA14 and PB5 pins are short sealed inside the chip, so it is forbidden to configure both IO as the output function; when the PB1 and PB10 pins are short sealed inside the chip, the PB10 pin no longer supports voltage tolerant 5V, and it is forbidden to configure both IO as the output function. The PA12 and PA13 pins are short-connected and sealed inside the chip, so it is forbidden to configure both IO as the output function.

Note 8: For the CH32L103F8U6 chip, the PB1 and PB10 pins are shorted and sealed inside the chip, so the PB10 pin no longer supports voltage 5V, and both IO are prohibited from being configured as the output function; the PB6 and PB13 pins are shorted and sealed inside the chip, and both IO are prohibited from being configured as the output function; PA12 and PA14 pins are shorted inside the chip, and both IO are prohibited from being configured as the output function. The PA11 and PA13 pins are short-connected and sealed inside the chip, so it is forbidden to configure both IO as the output function, while the PA10 and PB7 pins are short-connected and sealed inside the chip, so it is forbidden to configure both IO as the output function.

Note 9: For the CH32L103F8P6 chip, PA13 and PB6 pins are short-connected and sealed inside the chip, and both IO are prohibited from being configured as output functions; PA14 and PB7 pins are short-connected and sealed inside the chip, and both IO are prohibited from being configured as output functions.

Note 10: The underlined value of the remapping function indicates the configuration value of the corresponding bit in the AFIO register. For example, CAN_RX_2 indicates that the corresponding bit configuration of the AFIO register is 10b.

2.3 Pin Alternate Functions

Note: The pin function in the table below refer to all functions and does not involve specific model(s). There are differences in peripheral resources between different models. Please confirm whether this function is available according to the particular model's resource table before viewing this table.

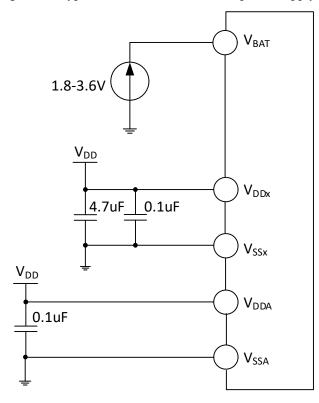
Alternate Pin	ADC	TIM1	TIM2/3/4	USART	СМР	SYS	I2C	SPI	CAN	USB	OPA	LPTIM
PA0	ADC_IN0		TIM2_CH1_ETR TIM2_CH1_ETR_2	USART2_CTS USART2_CTS_2 USART2_CTS_3		WKUP					OPA_P4	
PA1	ADC_IN1	TIM1_CH1_2 TIM1_CH1_3 TIM1_CH2N_5	TIM2_CH2 TIM2_CH2_2	USART2_RTS USART2_RTS_2 USART2_RTS_3							OPA_N4	
PA2	ADC_IN2	TIM1_CH4_4	TIM2_CH2_4 TIM2_CH2_5 TIM2_CH3 TIM2_CH3_1	USART1_CTS_2 USART2_TX	CMP1_P0						OPA_O2	
PA3	ADC_IN3	TIM1_ETR_3 TIM1_CH4_5	TIM2_CH1_ETR_4 TIM2_CH4 TIM2_CH4_1	USART1_CK_2 USART2_RX							OPA_O0	
PA4	ADC_IN4		TIM2_CH4_7	USART1_TX_2 USART1_RX_3 USART2_CK USART2_CK_2 USART2_CK_3				SPI1_NSS			OPA_O3	
PA5	ADC_IN5		TIM2_CH3_7	USART1_TX_3 USART1_RX_2 USART4_TX_1				SPI1_SCK			OPA_N3	
PA6	ADC_IN6	TIM1_BKIN_1	TIM2_CH4_4 TIM2_CH4_5 TIM3_CH1	USART1_CK_3 USART1_CK_4 USART4_CK_1				SPI1_MISO			OPA_N1 OPA_P5	
PA7	ADC_IN7	TIM1_CH2_2 TIM1_CH2_3 TIM1_CH1N_1	TIM3_CH2	USART4_CTS_1				SPI1_MOSI			OPA_N5 OPA_P3	
PA8		TIM1_CH1 TIM1_CH1_1		USART1_CK USART1_CK_1		МСО						
PA9		TIM1_CH2 TIM1_CH2_1		USART1_TX								
PA10		TIM1_CH3 TIM1_CH3_1		USART1_RX								
PA11		TIM1_CH4 TIM1_CH4_1		USART1_CTS USART1_CTS_1 USART2_TX_2 USART2_RX_3					CAN_RX	USBDM		
PA12		TIM1_BKIN_4	TIM2_CH1_ETR_5	USART1_RX_5			I2C1_SDA_2	SPI1_NSS_2	CAN_TX	USBDP		

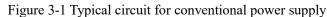
Table 2-3 Pin alternate and remapping functions

Alternate Pin	ADC	TIM1	TIM2/3/4	USART	СМР	SYS	I2C	SPI	CAN	USB	OPA	LPTIM
		TIM1_ETR TIM1_ETR_1	TIM2_CH1_ETR_7	USART1_RTS USART1_RTS_1 USART2_TX_3 USART2_RX_2								
PA13		TIM1_ETR_5 TIM1_BKIN_2 TIM1_BKIN_3		USART1_RTS_2 USART1_RTS_4		SWDIO	I2C1_SCL_2					
PA14		TIM1_CH3_2 TIM1_CH3_3 TIM1_CH1N_4 TIM1_CH1N_5		USART1_CTS_4		SWCLK						
PA15			TIM2_CH1_ETR_1 TIM2_CH1_ETR_3	USART4_RTS_1				SPI1_NSS_1				
PB0	ADC_IN8	TIM1_CH2N_1 TIM1_CH2N_2 TIM1_CH2N_3	TIM3_CH3 TIM3_CH3_1	USART4_TX	CMP1_OUT0						OPA_P1 OPA_O4	
PB1	ADC_IN9	TIM1_CH1_5 TIM1_CH4_2 TIM1_CH4_3 TIM1_CH2N_4 TIM1_CH3N_1	TIM3_CH4 TIM3_CH4_1	USART4_RX	CMP1_N0						OPA_01	
PB2				USART4_CK	CMP1_P1		BOOT1					LPT_OUT_1
PB3			TIM2_CH2_1 TIM2_CH2_3	USART4_CTS	CMP1_N1 CMP2_N0 CMP3_N0			SPI1_SCK_1				
PB4			TIM3_CH1_1	USART4_RTS	CMP3_OUT0			SPI1_MISO_1				
PB5			TIM3_CH2_1	USART4_RX_1	CMP2_OUT0 CMP3_P0		I2C1_SMBA I2C1_SMBA_ 2 I2C1_SMBA_ 3	SPI1_MOSI_1				LPT_IN1_1
PB6		TIM1_ETR_2 TIM1_ETR_4 TIM1_CH3_5	TIM4_CH1	USART1_TX_1 USART1_CK_5	CMP2_P1		I2C1_SCL	SPI1_SCK_2 SPI1_SCK_3		CC1		LPT_ETR_1
PB7		TIM1_CH1_4 TIM1_CH3N_5	TIM4_CH2	USART1_RX_1 USART1_CTS_3 USART1_CTS_5	CMP2_N1		I2C1_SDA	SPI1_MOSI_2 SPI1_MOSI_3		CC2		LPT_IN2_1
PB8		TIM1_CH2_4 TIM1_CH2_5	TIM4_CH3 TIM4_CH3_1 TIM2_CH2_7	USART1_RTS_3 USART1_RTS_5	CMP2_P0			SPI1_MISO_2 SPI1_MISO_3	CAN_RX _2			
PB9		TIM1_CH3N_2 TIM1_CH3N_3 TIM1_CH3N_4	TIM4_CH4 TIM4_CH4_1	USART1_RX_4			I2C1_SCL_3		CAN_TX _2			
PB10			TIM4_CH1_1 TIM2_CH3_2 TIM2_CH3_3	USART3_TX	CMP1_OUT1 CMP3_P1		I2C2_SCL				OPA_N2 OPA_N6	

Alternate Pin	ADC	TIM1	TIM2/3/4	USART	СМР	SYS	I2C	SPI	CAN	USB	OPA	LPTIM
PB11		TIM1_CH1N_2 TIM1_CH1N_3	TIM2_CH4_2 TIM2_CH4_3 TIM4_CH2_1	USART1_TX_4 USART3_RX	CMP2_OUT1 CMP3_N1		I2C1_SDA_3 I2C2_SDA				OPA_N0	
PB12		TIM1_CH3_4 TIM1_BKIN	TIM2_CH3_4 TIM2_CH3_5	USART1_TX_5 USART3_CK USART3_CK_2 USART3_CK_3	CMP3_OUT1		I2C2_SMBA	SPI1_NSS_3 SPI2_NSS				LPT_IN1
PB13		TIM1_CH1N		USART3_CTS USART3_CTS_2 USART3_CTS_3				SPI2_SCK				LPT_IN2
PB14		TIM1_CH2N		USART3_RTS USART3_RTS_2 USART3_RTS_3				SPI2_MISO			OPA_P2	LPT_ETR
PB15		TIM1_CH3N						SPI2_MOSI			OPA_P0	LPT_OUT
PC13						RTC TAMPER						
PC14						OSC32_I N						
PC15						OSC32_O UT						
PD0				USART3_TX_3 USART3_RX_2		OSC_IN			CAN_RX _3			
PD1				USART3_TX_2 USART3_RX_3		OSC_OU T			CAN_TX _3			

Chapter 3 Electrical Characteristics


3.1 Test Conditions


Unless otherwise specified and indicated, all voltages are referenced to VSS.

All minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and clock frequency. Typical values are based on normal temperature (25° C) and VDD = 3.3V environment, which are given only as design guidelines.

The data based on comprehensive evaluation, design simulation or technology characteristics are not tested in production. On the basis of comprehensive evaluation, the minimum and maximum values refer to sample tests. Unless otherwise specified that is tested, the characteristic parameters are guaranteed by comprehensive evaluation or design.

Power supply scheme:

3.2 Absolute Maximum Ratings

Critical or exceeding the absolute maximum value may cause the chip to operate improperly or even be damaged.

Symbol	Description	Min.	Max.	Unit
T _A	Ambient temperature during operation	-40	85	°C
Ts	Ambient temperature during storage	-40	125	°C

Table 3-1 Absolute maximum ratings

V _{DD} -V _{SS}	External mains supply voltage (including VDDA and VDD)	-0.3	4.0	V
N7	FT (tolerant 5V) input voltage on pins	V _{SS} -0.3	5.5	V
$V_{\rm IN}$	Voltage on other pins	V _{SS} -0.3	V _{DD} +0.3	V
$\left \bigtriangleup V_{DD_x} \right $	Voltage difference between each VDD of the main supply pins		50	mV
$ \triangle V_{SS_x} $	Voltage difference between different ground pins		50	mV
Vesd(hbm)	ESD Electrostatic Discharge Voltage (HBM) on Normal I/O Pins	4K		V
	ESD voltage (HBM) on USB pins	4K		V
I _{VDD}	Total current through V _{DD} /V _{DDA} power line (supply current)		150	mA
I_{Vss}	Total current through V _{SS} ground line (outgoing current)		150	mA
т	Pour current on arbitrary I/O and control pins		25	mA
I _{IO}	Source current on arbitrary I/O and control pins		-25	mA
	NRST pin injection current		+/-5	mA
I _{INJ(PIN)}	OSC_IN pin of HSE and OSC_IN pin of LSE injection current		+/-5	mA
	Injection current on other pins		+/-5	mA
$\sum I_{INJ(PIN)}$	Total injection current on all IO and control pins		+/-25	mA

3.3 Electrical Characteristics

3.3.1 Operating Conditions

Symbol	Parameter	Condition	Min.	Max.	Unit	
F _{HCLK}	Internal HB clock frequency			96	MHz	
FPCLK1	Internal PB1 clock frequency			96	MHz	
FPCLK2	Internal PB2 clock frequency			96	MHz	
V	Standard anorating valtage		1.8	3.6	v	
V_{DD}	Standard operating voltage	Use USB	3.0	3.6	v	
V	Operating voltage of the analog section (without ADC)		2.0	3.6	V	
V _{DDA}	Operating voltage of the analog section (with ADC)		2.4	3.6	V	
V _{BAT} ⁽¹⁾	Backup unit operating voltage	No more than V _{DD}	1.8	3.6	V	
T _A	Ambient temperature		-40	85	°C	
TJ	Junction temperature range		-40	105	°C	

Table 3-2 General operating conditions

Note: 1. The battery to V_{BAT} cable should be as short as possible.

Table 3-3 Power-on and power-down conditions
--

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{DD} rising speed	V _{DD} rising speed		0	œ	/\ <i>T</i>
t _{VDD}	V _{DD} falling speed		70	x	us/V

Note: 1. The battery to V_{BAT} cable should be as short as possible.

3.3.2 Built-in Reset and Power Control Block Characteristics

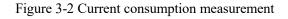
Symbol	Parameter	d voltage monitor (For PDR, se Condition	Min.	Typ.	Max.	Unit
Symoor	1 drameter	PLS[2:0] = 000 (rising		1yp.	IVIUA.	Om
		edge)		1.75		V
		PLS[2:0] = 000 (falling		1.75		
		edge)		1.70		V
		PLS[2:0] = 001 (rising				
		edge)		1.93		V
		PLS[2:0] = 001 (falling				
		edge)		1.87		V
		PLS[2:0] = 010 (rising				V
		edge)		2.14		V
		PLS[2:0] = 010 (falling				V
		edge)		2.08		v
		PLS[2:0] = 011 (rising				v
$\mathrm{V}_{\mathrm{PVD}}^{(2)}$	Level selection of	edge)		2.35		v
		PLS[2:0] = 011 (falling				V
	programmable voltage	edge)		2.28		
	detector	PLS[2:0] = 100 (rising				V
		edge)		2.54		
		PLS[2:0] = 100 (falling		• • •		V
		edge)		2.46		
		PLS[2:0] = 101 (rising		2.72		V
		edge) $\mathbf{PL} \mathbf{S}[2:0] = 101 \text{(falling)}$		2.72		
		PLS[2:0] = 101 (falling edge)		2.63		V
		PLS[2:0] = 110 (rising		2.05		
		edge)		2.92		V
		PLS[2:0] = 110 (falling		2.92		
		edge)		2.83		V
		PLS[2:0] = 111 (rising)				
		edge)		3.1		V
		PLS[2:0] = 111 (falling				17
		edge)		3.01		V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis		0.05	0.08	0.1	V
	Power-on/power-down	Rising edge	1.62	1.73	1.80	V
V _{POR/PDR} ⁽²⁾	reset threshold	Falling edge	1.45 ⁽³⁾	1.55	1.65	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis			180	600	mV
t _{rsttempo}	Reset duration		6	6.5	30	ms

$T_{-1} = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2$	(For PDR, select high threshold gear)
Table 3-4 Reset and Voltage monitor	For PDR select high inteshold gear)
ruore 5 i ruebet und i ontage moment	(I of I Did, beleet high un ebhola geal)

Note: 1. Design parameters;

2. Normal temperature test value.

3. When in STOP mode 3, stop mode 4 or STANDBY mode, the minimum value of $V_{POR/PDR}$ at the falling edge is 1.2V.


3.3.3 Embedded Reference Voltage

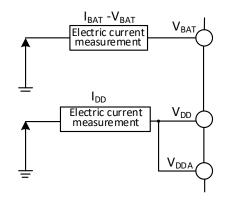

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{REFINT}	Built-in reference voltage	$\begin{array}{rcl} T_{\rm A} &=& -40^{\circ}{\rm C} &\sim \\ 85^{\circ}{\rm C} \end{array}$	1.17	1.2	1.23	V
T _{S_vrefint}	ADC sampling time when reading the internal reference voltage	Slow sampling recommended			20	us

 Table 3-5 Embedded reference voltage

3.3.4 Supply Current Characteristics

Current consumption is a comprehensive index of a variety of parameters and factors. These parameters and factors include operating voltage, ambient temperature, I/O pin load, software configuration of the product, the operating frequency, flip rate of the I/O pin, the location of the program in memory and the executed code, etc. The current consumption measurement method is as follows:

The microcontroller is in the following conditions:

Tested with room temperature $V_{DD} = 3.3V$: Bit CC1_PD of R16_PORT_CC1 and Bit CC2_PD of R16_PORT_CC2 are both = 0, all I/O pins are configured as pull-down inputs running on the high-speed internal RC oscillator HSI with HSI = 8M. $F_{PLCK1}=F_{HCLK}/2$ and $F_{PLCK2}=F_{HCLK}$ to enable or disable the power consumption of all peripheral clocks.

Symbol		Condition			Tyj					
	Parameter	HSILP	PLLON	F	Enable all	Disable all	Unit			
		ПЭЦГ	PLLON	F _{HCLK}	peripherals	peripherals				
I (1)	Supply current	0	1	96MHz	7.46	4.70				
$I_{DD}^{(1)}$	in Run mode	0	1	48MHz	5.13	3.77	mA			

Table 3-6 Data Processing Code Running from FLASH, Setting LDOTRIM[1:0]=10, LDO EC=0

	0	1	8MHz	2.23	1.95	
	0	1	1MHz	1.46	1.43	
	1	1	1MHz	1.27	1.24	
	0	0	8MHz	2.14	1.87	
	0	0	1MHz	1.37	1.34	
	1	0	1MHz	1.19	1.17	
	0	1	96MHz	5.58	2.82	
Supply current	0	1	48MHz	3.52	2.14	
in sleep mode	0	1	8MHz	1.74	1.47	
(when	0	1	1MHz	1.40	1.37	
peripherals are	1	1	1MHz	1.21	1.18	mA
powered and	0	0	8MHz	1.65	1.38	
clock is held)	0	0	1MHz	1.31	1.28	
	1	0	1MHz	1.13	1.10	

Note: 1. The above are measured parameters.

2. When configuring CC1_PD and CC2_PD = 1, the current consumption of CH32L103K8U6 and F8U6 chips will be about 5uA; on the basis of the above table; When other CH32L103 chips are configured with CC1_PD and CC2_PD = 1 and PB6/CC1 and PB7/CC2 pins are pull-down inputs, their current consumption will be increased by about 5uA on the basis of the above table.

Table 3-7-1 Data processing code runs fr	om SRAM, FLASH enters lo	ow-power mode(1), Set LE	OTRIM[1:0]=10

	Parameter	Condition		Тур.			
Symbol		HSILP	PLLON	Fhclk ⁽³⁾	Enable all peripherals	Disable all peripherals	Unit
IDD ⁽²⁾ Supply current in Run mode Supply current in sleep mode (when peripherals are powered and clock is held)		0	1	96MHz	7.08	4.29	
		0	1	48MHz	3.77	2.37	
		0	1	8MHz	0.91	0.63	
		0	1	1MHz	0.40	0.37	
	Sumply summert	1	1	8MHz	0.68	0.46	
	1	1	1MHz	0.21	0.17	mA	
	0	0	8MHz	0.83	0.56		
		0	0	1MHz	0.31	0.28	
		1	0	1MHz	0.13	0.10	
		1	0	500KHz	0.10	0.08	
		1	0	125KHz	0.07	0.07	
		0	1	96MHz	4.60	1.81	
	Supply current	0	1	48MHz	2.52	1.13	
	in sleep mode	0	1	8MHz	0.72	0.44	
	0	1	1MHz	0.38	0.34		
	peripherals are	1	1	8MHz	0.48	0.25	mA
	powered and	1	1	1MHz	0.18	0.15	
	clock is held)	0	0	8MHz	0.63	0.35	
	0	0	1MHz	0.28	0.26]	

1	0	1MHz	0.11	0.07	
1	0	500KHz	0.08	0.07	
1	0	125KHz	0.07	0.06	

Note: 1. When FLASH_LP_REG=1 and FLASH_LP=1, FLASH enters low-power mode.

2. The above are measured parameters.

3. When FHCLK exceeds 16MHz, set LDO_EC=0, otherwise set LDO_EC=1 by default.

4. When configuring CC1_PD and CC2_PD = 1, the current consumption of CH32L103K8U6 and F8U6 chips will be about 5uA; on the basis of the above table; When other CH32L103 chips are configured with CC1_PD and CC2_PD = 1 and PB6/CC1 and PB7/CC2 pins are pull-down inputs, their current consumption will be increased by about 5uA on the basis of the above table.

Table 3-7-2 Data processing code runs from SRAM, FLASH does not enter low-power mode(1), set
LDOTRIM[1:0]=10

			Condition		Т	yp.	mA
Symbol	Parameter	HSILP	PLLON	F _{HCLK} ⁽³⁾	Enable all peripherals	Disable all peripherals	Unit
		0	1	96MHz	7.87	5.09	
		0	1	48MHz	4.68	3.28	
		0	1	8MHz	1.97	1.69	
	Cumelty symmet	0	1	1MHz	1.44	1.40	
	Supply current in Run mode	1	1	8MHz	1.71	1.47	mA
	III Kull mode	1	1	1MHz	1.23	1.20	
		0	0	8MHz	1.85	1.57	
		0	0	1MHz	1.34	1.31	
I _{DD} ⁽²⁾		1	0	1MHz	1.16	1.13	
IDD		0	1	96MHz	5.64	2.84	
		0	1	48MHz	3.56	2.16	
	Supply current	0	1	8MHz	1.75	1.48	
	in sleep mode	0	1	1MHz	1.41	1.38	
	(when peripherals are	1	1	8MHz	1.51	1.28	mA
	powered and	1	1	1MHz	1.21	1.18	
	clock is held)	0	0	8MHz	1.66	1.39	
		0	0	1MHz	1.32	1.29	mA
		1	0	1MHz	1.14	1.11	

Note: 1. When FLASH_LP_REG=0, FLASH does not enter low-power mode.

2. The above are measured parameters.

3. When FHCLK exceeds 16MHz, set LDO_EC=0, otherwise set LDO_EC=1 by default.

4. When configuring CC1_PD and CC2_PD = 1, the current consumption of CH32L103K8U6 and F8U6 chips will be about 5uA; on the basis of the above table; When other CH32L103 chips are configured with CC1_PD and CC2_PD = 1 and PB6/CC1 and PB7/CC2 pins are pull-down inputs, their current consumption will be increased by about 5uA on the basis of the above table.

Table 3-7-3 Data processing code runs from SRAM, FLASH enters low-power mode(1), Setting

			Condition		Т	yp.	
Symbol	Parameter	HSILP	PLLON	F _{HCLK} ⁽³⁾	Enable all peripherals	Disable all peripherals	Unit mA mA
		0	1	96MHz	6.32	3.78	
		0	1	48MHz	3.41	2.11	
		0	1	8MHz	0.86	0.60	
		0	1	1MHz	0.39	0.36	
	Supply current	1	1	8MHz	0.63	0.42	
	in Run mode	1	1	1MHz	0.20	0.16	mA
	in Run mode	0	0	8MHz	0.76	0.52	
		0	0	1MHz	0.30	0.27	
		1	0	1MHz	0.13	0.09	
		1	0	500KHz	0.09	0.08	
I _{DD} ⁽²⁾		1	0	125KHz	0.07	0.06	
IDD		0	1	96MHz	4.22	1.67	
		0	1	48MHz	2.33	1.05	
		0	1	8MHz	0.68	0.42	
	Supply current	0	1	1MHz	0.37	0.34	
	in sleep mode	1	1	8MHz	0.45	0.24	
	(when	1	1	1MHz	0.17	0.14	mA
	peripherals are powered and	0	0	8MHz	0.59	0.34	
	clock is held)	0	0	1MHz	0.27	0.25	
	clock is lield)	1	0	1MHz	0.10	0.07	
		1	0	500KHz	0.08	0.06	
		1	0	125KHz	0.06	0.06	

LDOTRIM[1:0]=01

Note: 1. *When FLASH_LP_REG=1 and FLASH_LP=1*, *FLASH enters low-power mode.*

2. The above are measured parameters.

3. When FHCLK exceeds 16MHz, set LDO_EC=0, otherwise set LDO_EC=1 by default.

4. When configuring CC1_PD and CC2_PD = 1, the current consumption of CH32L103K8U6 and F8U6 chips will be about 5uA; on the basis of the above table; When other CH32L103 chips are configured with CC1_PD and CC2_PD = 1 and PB6/CC1 and PB7/CC2 pins are pull-down inputs, their current consumption will be increased by about 5uA on the basis of the above table.

Table 2 8 1 Data processing of	do rung from ELASU typical auro	nt consumption in Stop and Standby mode
Table 3-0-1 Data brocessing co	Jue runs nom r LASII. typical curre	nt consumption in Stop and Standby mode
	, ,1	

		0		,	21		1	-			
					Conditio	on					
Symbol	Parameter	HIS, HSE, LSI, LSE	RAMLV	R18KS TY	R2KS TY	LDO_ EC	LPDS	PDDS	LDO	Тур.	Unit
I _{DD}	Supply current in STOP mode1	All disabled	Invalid	Invalid	Invalid	0	0	0	10	34.63	
	Supply current in STOP mode2	All disabled	Invalid	Invalid	Invalid	1	0	0	10	23.88	uA

	Supply current in STOP mode3	All disabled	0	Invalid	Invalid	X	1	0	10	4.55	
	Supply current in STOP mode4	All disabled	1	Invalid	Invalid	Х	1	0	10	4.08	
		Only enable LSI	0	1	1	Invalid	Invalid	1	10	2.97	
		All disabled	0	1	1	Invalid	Invalid	1	10	2.82	
		All disabled	1	1	1	Invalid	Invalid	1	10	1.89	
	Supply current in STANDBY mode	Only enable LSI	1	0	1	Invalid	Invalid	1	10	0.74	uA
		All disabled	1	0	1	Invalid	Invalid	1	10	0.59	
		Only enable LSI	Invalid	0	0	Invalid	Invalid	1	10	0.51	
		All disabled	Invalid	0	0	Invalid	Invalid	1	10	0.37	
Idd_vbat	Supply current for backup domain	Only enable LSE	Invalid	0	0	Invalid	Invalid	1	10	0.75	
	$\begin{array}{ll} (Remove & V_{DD} \\ and & V_{DDA} & and \\ use & only & V_{BAT} \\ supply) \end{array}$	All disabled	Invalid	0	0	Invalid	Invalid	1	10	0.37	uA

Note: 1. The above are measured parameters.

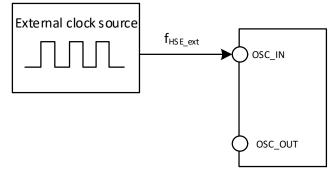
2. When configuring CC1_PD and CC2_PD = 1, the current consumption of CH32L103K8U6 and F8U6 chips will be about 5uA; on the basis of the above table; When other CH32L103 chips are configured with CC1_PD and CC2_PD = 1 and PB6/CC1 and PB7/CC2 pins are pull-down inputs, their current consumption will be increased by about 5uA on the basis of the above table.

3. CH32L103K8U6 and F8U6 have built-in 5.1 Ω pull-down resistors. Only for products with the penultimate lot number of 1, the configuration in Note 2 is not needed because the function of the 5.1 Ω pull-down resistor is forced to be turned on in standby mode. The current consumption of CH32L103K8U6 and F8U6 chips in standby mode will be increased by about 5uA on the basis of the above table.

Table 3-8-2 Data processing code runs from FLASH, typical current consumption in Stop mode

					Condition						
Symbol	Parameter	HIS, HSE	RAMLV	R18KST R2KST LDO	LDDC	PDDS	LDO	Тур.	Unit		
		LSI, LSE	KAWLV	Y	Y	EC	LPDS	PDDS	LDO		
	Supply current	All	Invalid	Invalid	Invalid	0	0	0	01	30.94	
I T	in STOP mode1	disabled	IIIvallu	IIIvaliu	mvanu	0	0	0	01	30.94	
I _{DD}	Supply current	All	Invalid	Invalid	Invalid	1	0	0	01	20.22	uA
	in STOP mode2	disabled	mvand			Invalid		0	0	01	20.22

Note: 1. The above are measured parameters.


2. When configuring CC1_PD and CC2_PD = 1, the current consumption of CH32L103K8U6 and F8U6 chips will be about 5uA; on the basis of the above table; When other CH32L103 chips are configured with CC1_PD and CC2_PD = 1 and PB6/CC1 and PB7/CC2 pins are pull-down inputs, their current consumption will be increased by about 5uA on the basis of the above table.

3.3.5 External Clock Source Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{HSE_ext}	External clock frequency		3	8	25	MHz
V _{HSEH} ⁽¹⁾	OSC_IN input pin high level voltage		$0.8 V_{DD}$		V _{DD}	V
V _{HSEL} ⁽¹⁾	OSC_IN input pin low level voltage		0		$0.2V_{DD}$	V
C _{in(HSE)}	OSC_IN input capacitance			5		pF
DuCy _{HSE}	Duty Cycle			50		%
IL	OSC_IN input leakage current				±1	uA

Note 1: Failure to meet this condition may cause a level recognition error.

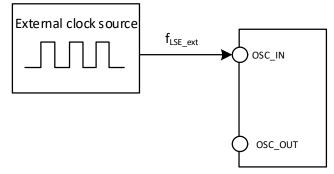

Figure 3-3 Low frequency clock circuit for external clock source

Table 3-10 From external low-speed clock

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{LSE_ext}	User external clock frequency			32.768	1000	KHz
V _{LSEH}	OSC32_IN input pin high level voltage		$0.8 V_{DD}$		V _{DD}	V
V _{LSEL}	OSC32_IN input pin low voltage		0		$0.2V_{DD}$	V
C _{in(LSE)}	OSC32_IN input capacitance			5		pF
DuCy _{LSE}	Duty Cycle			50		%
IL	OSC32_IN input leakage current				±1	uA

Figure 3-4 Low frequency clock circuit for external clock source

Table 3-11 High-Speed external	clocks generated us	ing one crystal/cerami	c resonator
rable 5-11 High-speed external	clocks generated us	ing one erystal/cerann	c resonator

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{OSC_IN}	Resonator frequency		3	8	25	MHz
R _F	Feedback resistance			250		kΩ
С	Suggested load capacitance with corresponding crystal serial impedance R _S			20		pF
I ₂ ⁽¹⁾	HSE drive current	$V_{DD} = 3.3V$, 20p load Low-power, $V_{DD} = 3.3V$, 20p load		1 0.55		mA mA
$g_{m}^{(1)}$	Oscillator transconductance	Startup		21		mA/V
t _{SU(HSE)}	Startup time	V _{DD} stabilization		1.5 ⁽²⁾	4.5	ms

Note: 1. 25M crystal ESR is recommended not to exceed 60 ohms, below 25M can be relaxed appropriately. 2. Start-up time refers to the time difference from when HSEON is turned on to when HSERDY is set.

Circuit reference design and requirements:

The load capacitance of the crystal is based on the crystal manufacturer's recommendation, usually $C_{L1}=C_{L2}$.

Figure 3-5 Typical circuit for external 8M crystal

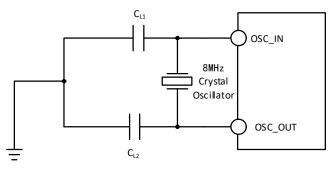
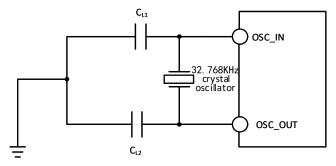


Table 3-12 Low-speed external clocks generated using a crystal/ceramic resonator (f_{LSE} =32.768KHz)

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _F	Feedback resistance			5		MΩ
C_{L1}/C_{L2}	Suggested load capacitance with corresponding crystal serial	$R_{S} = 70 K \Omega$			15	pF


	impedance R _S			
i ₂ ⁽¹⁾	LSE drive current	$V_{DD} = 3.3V$	0.36	uA
$g_{m}^{(1)}$	Oscillator transconductance	Startup	26	uA/V
t _{SU(LSE)}	Startup time	V _{DD} stabilization	1000(1)	ms

Note: The startup time is the time difference between when LSEON is turned on and when LSERDY is set.

Circuit reference design and requirements:

The load capacitance of the crystal is based on the crystal manufacturer's recommendation, usually $C_{L1}=C_{L2}$, optional about 12pF.

Figure 3-6 Typical Circuit for External 32.768K Crystal

Note: The load capacitance C_L is calculated by the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$, where C_{stray} is the capacitance of the pins and the capacitance associated with the PCB board or PCB, and its typical value is between 2pF and 7pF.

3.3.6 Internal Clock Source Characteristics

Table 3-13 Internal High-Speed (HSI) RC Oscillator Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
			8		MHz	
F _{HSI}	Frequency (after calibration)	Low-power mode		1		MHz
DuCy _{HSI}	Duty Cycle		45	50	55	%
	Accuracy of HSI oscillator (after	$T_A = 0^{\circ}C \sim 70^{\circ}C$	-1.8		1.8	%
ACC _{HSI}	calibration)	$T_A = -40^{\circ}C \sim 85^{\circ}C$	-3		2.5	%
t _{SU(HSI)}	HSI oscillator startup stabilization time				8	us
I _{DD(HSI)}]				200		uA
	HSI oscillator power consumption	Low-power mode		24		uA

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{LSI}	Frequency		27	37	47	KHz
DuCy _{LSI}	Duty Cycle		45	50	55	%
t _{SU(LSI)}	LSI oscillator startup stabilization time			400		us
I _{DD(LSI)}	LSI oscillator power consumption			150		nA

3.3.7 PLL Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Б	PLL input clock		3	8	25	MHz
F _{PLL_IN}	PLL input clock duty cycle		40		60	%
F _{PLL_OUT}	PLL multiplier output clock		18		96(1)	MHz
t _{LOCK}	PLL lock time			80	200	us
I _{DD(PLL)}		Input frequency 8M,		0.15		A
	PLL power consumption	Output frequency 96M		0.13		mA

Table 3-15 PLL Characteristics

Note 1: The appropriate multiplier frequency must be selected to meet the PLL output frequency range.

3.3.8 Wakeup Time from Low-power Mode

Table 3-16	Wakeup	time	from	low-pc	ower	mode ⁽¹⁾
14010 0 10	, and ap	UIIIU	110111	10 11 pc		111040

Symbol	Parameter	Condition	Тур.	Unit
t _{wusleep}	Wakeup from Sleep mode	Wake up using HSI RC clock	0.2	us
t _{wustop}	Wakeup from Stop mode	Wake up using HSI RC clock	7	us
t _{WUSTDBY}	Wakeup from Standby mode	Wake up using HSI RC clock	72	us

Note: The above are measured parameters.

3.3.9 Memory Characteristics

Table 3-17 Flash memory characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{prog_page}	Page (256 bytes) programming time			2.0	2.5	ms
t _{erase_page}	Page (256 bytes) erase time			6.2	7.5	ms
t _{erase_sec}	Sector (1K bytes) erase time			6.2	7.5	ms

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
N	Endurance	$T_A = 25^{\circ}C$	300K			Times
N _{END}		$T_A = 70^{\circ}C$	100K			Times
4	Data retention period	$T_A = 25^{\circ}C$	20			Years
t _{RET}		$T_A = 70^{\circ}C$	10			Years

Table 3-18 Flash memory endurance and data retention

3.3.10 I/O Port Characteristics

Table 3-19 General-purpose I/O static characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
	Standard I/O pin, input high-level				V _{DD} +0.3	V
	voltage		8)+1.3		* DD + 0.5	v
V _{IH}	ET I/O gin input high lovel valtage		0.42*(V _{DD} -1.		5 5	v
FT I/O pin, input high-level volt	F I I/O pin, input nigh-level voltage		8)+1.2		5.5	v
	BOOT0 pin, input high-level		0.85*V _{DD}		V _{DD} +0.3	V

	voltage				
V _{IL}	Standard I/O pin, input low-level voltage	-0.3		0.28*(V _{DD} - 1.8)+0.6	V
	FT I/O pin, input low-level voltage	-0.3		0.32*(V _{DD} - 1.8)+0.55	V
V_{hys}	Standard I/O pin Schmitt trigger voltage hysteresis	150			mV
	FT I/O Schmitt trigger voltage hysteresis	90			mV
I _{lkg}	Standard I/O pin input leakage current			1	uA
	FT I/O pin input leakage current			3	uA
R _{PU}	Pull-up equivalent group	30	40	50	kΩ
R _{PD}	Pull-down equivalent group	30	40	50	kΩ
C _{IO}	I/O pin capacitor		5		pF

Note: The above are guaranteed design parameters.

Output Drive Current Characteristics

The GPIOs (General-purpose Input/Output Ports) can absorb or output up to ± 8 mA of current and absorb or output ± 20 mA of current (not strictly up to V_{OL}/V_{OH}). In user applications, the total current driven by all IO pins must not exceed the absolute maximum ratings given in section 3.2:

Table 3-20 Output voltage of	characteristics
------------------------------	-----------------

Symbol	Parameter	Condition	Min.	Max.	Unit
V _{OL}	Output low, 8 pins absorb current	TTL port, $I_{IO} = +8mA$		0.4	v
V _{OH}	Output high, 8 pins absorb current	$2.7V < V_{DD} < 3.6V$	V _{DD} -0.4		V
V _{OL}	Output low, 8 pins absorb current	CMOS port, $I_{IO} = +8mA$		0.4	v
Voh	Output high, 8 pins absorb current	$2.7V < V_{DD} < 3.6V$	V _{DD} -0.4		v
Vol	Output low, 8 pins absorb current	$I_{IO} = +20 \text{mA}$		0.8	v
Voh	Output high, 8 pins absorb current	$2.7V < V_{DD} < 3.6V$	V _{DD} -1.2		v
Vol	Output low, 8 pins absorb current	$I_{IO} = +6mA$		0.8	v
V _{OH}	Output high, 8 pins absorb current	$2.4V < V_{DD} < 2.7V$	V _{DD} -1.2		v

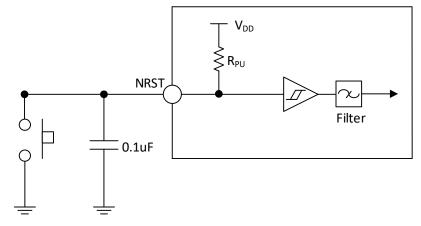
Note: If more than one IO pin is driven at the same time in the above conditions, the sum of the currents must not exceed the absolute maximum ratings given in section 3.2. Also when multiple IO pins are driven at the same time, the high current at the power/ground point can cause a voltage drop that prevents the voltage of the internal IOs from reaching the supply voltage in the table, which results in a drive current that is less than the nominal value.

MODEx[1:0] configuration	Symbol	Parameter	Condition	Min.	Max.	Unit
10 (2MHz)	F _{max(IO)out}	Maximum Frequency	CL=50pF, V _{DD} =2.7-3.6V		2	MHz
	t _{f(IO)out}	Output high-to-low level fall time	CL=50pF, V _{DD} =2.7-3.6V		125	ns

Table 3-21 Input/Output AC Characteristics

	t _{r(IO)out}	Output low-to-high rise time			125	ns
	F _{max(IO)out}	Maximum Frequency	CL=50pF, V _{DD} =2.7-3.6V		10	MHz
01 (10MHz)	t _{f(IO)out}	Output high-to-low level fall time	CL=50pF, V _{DD} =2.7-3.6V		25	ns
	t _{r(IO)out}	Output low-to-high rise time			25	ns
	F _{max(IO)out}	Maximum Englishay	CL=30pF, V _{DD} =2.7-3.6V		50	MHz
		Maximum Frequency	CL=50pF, V _{DD} =2.7-3.6V		30	MHz
11	t _f (IO)out	Output low-to-high rise time	CL=30pF, V _{DD} =2.7-3.6V		5	ns
(50MHz)		Maximum Frequency	CL=50pF, V _{DD} =2.7-3.6V		8	ns
	t _{r(IO)out}	Output high-to-low level fall	CL=30pF, V _{DD} =2.7-3.6V		5	ns
		time	CL=50pF, V _{DD} =2.7-3.6V		8	ns
		EXTI controller detects the				
	t _{EXTIpw}	pulse width of the external		10		ns
		signal				

3.3.11 NRST Pin Characteristics


Table 3-22 External reset pin characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{IL(NRST)}	NRST input low level voltage		-0.3		0.28*(V _{DD} -1.8)+0.6	V
V _{IH(NRST)}	NRST input high level voltage		0.41*(V _{DD} -1.8)+1.3		V _{DD} +0.3	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis		150			mV
R _{PU} ⁽¹⁾	Pull-up equivalent resistance		30	40	50	kΩ
V _{F(NRST)}	NRST input can be filtered for pulse width				100	ns
V _{NF(NRST)}	NRST input cannot be filtered pulse width		300			ns

Note: 1. *The pull-up resistor is a real resistor in series with a switchable PMOS implementation. The resistance of this PMOS/NMOS switch is very small (about 10%).*

Circuit reference design and requirements:

Figure 3-7 Typical circuit of external reset pin

Note: The capacitors shown are optional and can be used to filter out key jitter.

3.3.12 USB PD Interface Characteristics

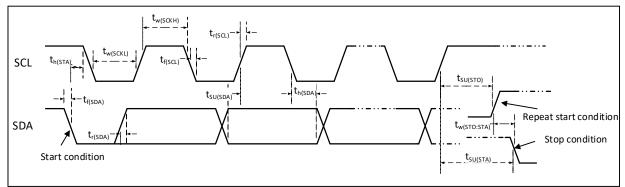
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
tRise	Rising time	The time between 10% and 90% of the range, with the minimum value being the time under no-load conditions.	240	400		ns
		The time between 10% and 90% of the				
tFall	Falling time	range, with the minimum value being	240	400		ns
		the time under no-load conditions.				
Va .	Output voltage swing		1.04	1.12	1.20	V
V_{Swing}	(Peak-to-peak)		1.04	1.12	1.20	v
Z _{Driver}	Output impedance		26		90	Ω

Table 3-23-1 PD interface I/O characteristics

Table 3-23-2 Type-C I/O characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
				80		uA
I _{pu} Pu	Pull-up current	$PAD < V_{DD}-0.6V$		180		uA
				330		uA
Rd	Pull-down current	$V_{DD} \ge 1.6V$ or external pull-up 330uA	4.08	5.1	6.12	kΩ

3.3.13 TIM Timer Characteristics


Table 3-24 TIMx characteristics

Symbol	Parameter	Condition	Min.	Max.	Unit
			1		t _{TIMxC}
t _{res(TIM)}	Timer reference clock		1		LK
		$f_{TIMxCLK} = 48MHz$	20.8		ns
F _{EXT}	Timer external clock frequency on		0	f _{TIMxCLK} /	MHz

	CH1 to CH4			2	
		$f_{TIMxCLK} = 48MHz$	0	24	MHz
R _{esTIM}	Timer resolution			16	Bit
t _{COUNTER}	16-bit counter clock cycle when the internal clock is selected		1	65536	t _{TIMxC} LK
		$f_{TIMxCLK} = 48MHz$	0.02	1363	us
t _{max_count}	Maximum possible count			65535	t _{TIMxC} LK
		$f_{TIMxCLK} = 48MHz$		1363	us

3.3.14 I2C Interface Characteristics

Figure 3-8 I2C bus timing diagram

Coursela e 1	Demonstern	Standard I2C		Fast I2C		I.I
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{w(SCKL)}	SCL clock low level time	4.7		1.2		us
t _{w(SCKH)}	SCL clock high level time	4.0		0.6		us
t _{SU(SDA)}	SDA data setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA and SCL rise time		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA and SCL fall time		300			ns
t _{h(STA)}	Start condition hold time	4.0		0.6		us
t _{SU(STA)}	Repeated start condition setup time	4.7		0.6		us
t _{SU(STO)}	Stop condition setup time	4.0		0.6		us
L .	Time from stop condition to start condition	47		1.2		110
t _{w(STO:STA)}	(bus free)	4.7		1.2		us
Cb	Capacitive load for each bus		400		400	pF

3.3.15 SPI Interface Characteristics

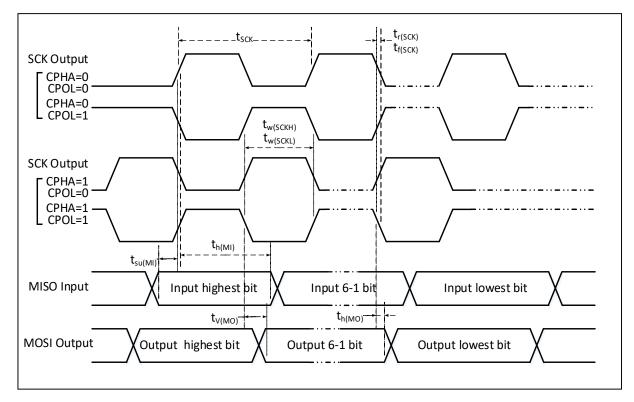
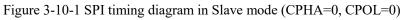
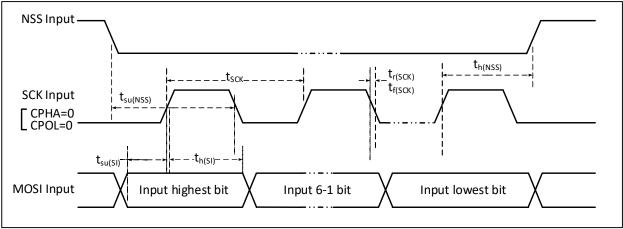




Figure 3-9 SPI timing diagram in Master mode

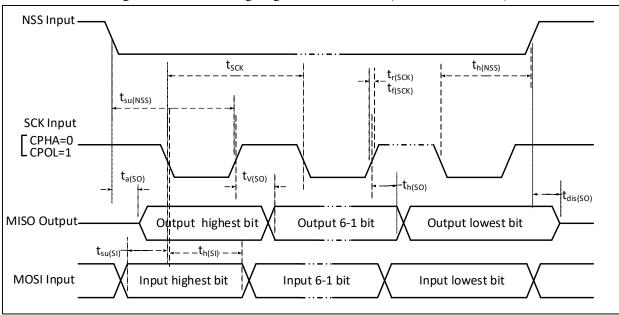
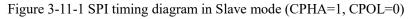
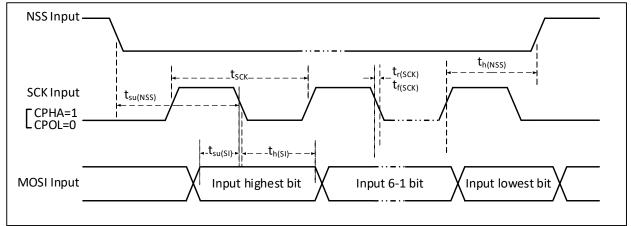




Figure 3-10-2 SPI timing diagram in Slave mode (CPHA=0, CPOL=1)

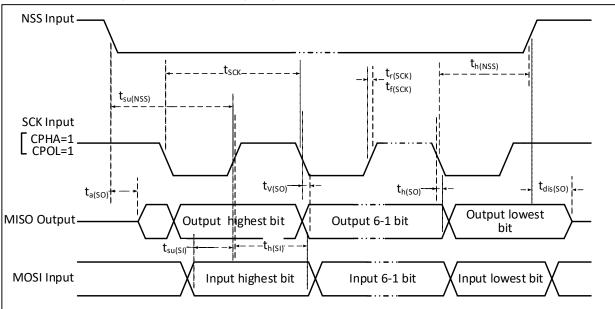


Figure 3-11-2 SPI timing diagram in Slave mode (CPHA=1, CPOL=1)

Table 3-26 SPI interface characteristic	s
---	---

Symbol	Parameter	Conc	dition	Min.	Max.	Unit
f _{SCK} /t _{SCK}	SDI alask fraguenau	Master mode			32	MHz
ISCK/USCK	SPI clock frequency	Slave mode			32	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI clock rise and fall time	Load capacitance: C = 30pF			8	ns
t _{SU(NSS)}	NSS setup time	Slave mode		2t _{HCLK}		ns
t _{h(NSS)}	NSS hold time	Slave mode		$2t_{HCLK}$		ns
$t_{w(SCKH)}/t_{w(SCKL)}$	SCK high-level and low-level time	Master mode, $f_{PCLK} = 24$ MHz, Prescaler factor = 4		70	97	ns
		Master mode	HSRXEN = 0	15		ns
t _{SU(MI)}	Data input setup time	Master mode	HSRXEN = 1	15-0.5t _{SCK}		
t _{SU(SI)}		Slave mode		4		ns
		Master mode	HSRXEN = 0	-4		ns
$t_{h(MI)}$	Data input hold time	Master mode	HSRXEN = 1	0.5t _{SCK} -4		
t _{h(SI)}		Slave mode		4		ns
t _{a(SO)}	Data output access time	Slave mode, f _{PCL}	$_{\rm K} = 20 {\rm MHz}$	0	1t _{HCLK}	ns
t _{dis(SO)}	Data output disable time	Slave mode		0	10	ns
t _{V(SO)}	Dete autout au l'il time	Slave mode (After enabling edge)			15	ns
t _{V(MO)}	Data output valid time	Master mode (After enabling edge)			5	ns
t _{h(SO)}	Data autout hald time-	Slave mode (After	r enabling edge)	8		ns
t _{h(MO)}	Data output hold time	Master mode (Aft	er enabling edge)	0		ns

3.3.16 USB Interface Characteristics

Table 3-27 USB interface I/O characteristics

Symbol Parameter	Condition	Min.	Тур.	Max.	Unit
------------------	-----------	------	------	------	------

V _{DD}	USB operating voltage	SelectionofUSBparametersaccording	3.0		3.6	V
		to V _{DD} voltage				
V_{SE}	Single-ended receiver threshold	Rated voltage	1.2		1.9	V
V _{OL}	Static output low level				0.3	V
V _{OH}	Static output high level		2.8			V
V_{BC_REF}	BC comparator reference voltage			0.4		V
V_{BC_SRC}	BC protocol output voltage			0.6		V

3.3.17 12-bit ADC Characteristics

Table 3-28 ADC characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
17		$f_S < 200 KHz$	1.8		3.6	V
V_{DDA}	Supply voltage	$f_S = 2.4 MHz$	3		3.6	V
		$f_s = 2.4 MHz$ Buffer off		1.2		mA
T	Supply current	$f_s = 2.4 MHz$ Buffer on		1.96		mA
I _{DDA}	Supply current	$f_{\rm S} = 1 \text{MHz}$ Buffer off		0.45		mA
		$f_{\rm S} = 1 \text{MHz}$ Buffer on		1.21		mA
f_{ADC}	ADC clock frequency			14	48	MHz
$\mathbf{f}_{\mathbf{S}}$	Sampling rate		0.05		2.4	MHz
		$f_{ADC} = 14 MHz$			875	KHz
f _{TRIG}	External trigger frequency				16	1/f _{ADC}
TIRIG		$f_{ADC} = 48 MHz$			2.2	MHz
					22	1/f _{ADC}
V _{AIN}	Conversion voltage range		0		V _{DDA}	V
R _{AIN}	External input impedance				50	kΩ
R _{ADC}	Sampling switch resistance			0.6	1.5	kΩ
C_{ADC}	Internal sample and hold capacitor			4		pF
	Calibration time	$f_{ADC} = 14 MHz$			7.14	us
t_{CAL}					100	$1/f_{ADC}$
	Injected trigger conversion	$f_{ADC} = 14 MHz$			0.143	us
t_{Iat}		$f_{ADC} = 48 MHz$			0.042	us
	latency				2	$1/f_{ADC}$
	Regular trigger conversion	$f_{ADC} = 14 MHz$			0.143	us
t_{Iatr}	latency	$f_{ADC} = 48 MHz$			0.042	us
	latency				2	1/f _{ADC}
		$f_{ADC} = 14 MHz$	0.107		17.1	us
ts	Sampling time		1.5		239.5	$1/f_{ADC}$
ι _s		$f_{ADC} = 48 MHz$		0.156		us
				7.5		$1/f_{ADC}$
t _{STAB}	Power-on time				1	us
t _{CONV}	Total conversion time	$f_{ADC} = 14 MHz$	1		18	us

(includ	ing sampling time)		14		252	$1/f_{ADC}$
		$f_{ADC} = 48 MHz$		0.417		us
				20		$1/f_{ADC}$

Note: The above are guaranteed design parameters.

Formula: Maximum RAIN

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

The above formula is used to determine the maximum external impedance such that the error can be less than 1/4 LSB. where N=12 (indicating 12-bit resolution).

t _s (us) 0.11	$\frac{\text{Maximum } R_{\text{AIN}}(k\Omega)}{1.2}$
0.11	1.2
0.54	12.3
0.96	23.3
2.04	50
2.96	75
3.96	No limit
5.11	No limit
17.1	No limit
	0.54 0.96 2.04 2.96 3.96 5.11

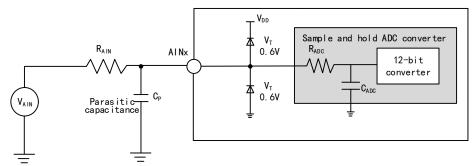
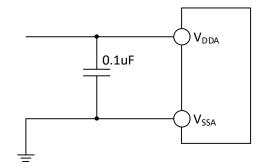

Table 3-29 Maximum R_{AIN} at $f_{ADC} = 14MHz$

Table 3-30 ADC error

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ET	Total error	$f_{ADC} = 14 MHz,$		±3	± 8	
ED	Differential nonlinear error	$R_{AIN} < 10 k\Omega$,		±2	±5	
	Integral nonlinear error	$V_{DD} = 3.3V,$				LSB
		$15mV < V_{AIN} < (V_{DD}-15mV)$		12	1.5	LSD
EL		Measurements are	±3		±5	
		calibrated.				

Note: The above are guaranteed design parameters.


Figure 3-12 ADC typical connection diagram

Cp indicates the parasitic capacitance on the PCB and pads (About 5pF), which may be related to the quality of

the pads and PCB layout. Larger values of Cp will reduce the conversion accuracy and the solution is to reduce the f_{ADC} value.

Figure 3-13 Analog power supply and decoupling circuit reference

3.3.18 TS Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _{TS}	Temperature sensor measurement range		-40		85	°C
A _{TSC}	Measurement error of temperature sensors			±12		°C
Avg_Slope	Average slope (negative temperature coefficient)		3.7	4.2	4.7	mV/°C
V ₂₅	Voltage at 25°C		1.4	1.45	1.5	V
T _{S_temp}	ADC sampling time when reading temperature	$f_{ADC} = 14 MHz$			20	us

3.3.19 OPA Characteristics

Table 3-32-1 OPA characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{DDA}	Supply voltage	Recommended not less than 2.4V	1.8	3.3	3.6	V
V _{CM}	Common mode input voltage		0		V _{DDA}	V
VIOFFSET0	Input offset voltage	Before calibration		±2	± 8	mV
VIOFFSET	Input offset voltage	After calibration		±0.2	± 0.8	mV
ILOAD	Drive current	$R_{LOAD} = 4k\Omega$			900	uA
ILOAD_PGA	PGA mode drive current				500	uA
Iddopamp	Current consumption	No load, static mode		220		uA
C _{MRR} ⁽¹⁾	Common mode rejection ratio	@1kHz		96		dB
P _{SRR} ⁽¹⁾	Power supply rejection ratio	@1kHz		82		dB
Av ⁽¹⁾	Open loop gain	$C_{LOAD} = 5 pF$		115		dB

$G_{BW}^{(1)}$	Unit gain bandwidth	$C_{LOAD} = 5 pF$		9		MHz
$P_{M}^{(1)}$	Phase margin	$C_{LOAD} = 5 pF$		75		
$\mathbf{S}_{\mathbf{R}}^{(1)}$	Slew rate limited	$C_{LOAD} = 5 pF$		5		V/us
t _{wakup} ⁽¹⁾	Setup time from shutdown to wake up, 0.1%	Input V _{DDA} /2, C _{LOAD} = 50pF, R _{LOAD} = 4k Ω			0.8	us
R _{LOAD}	Resistive load		4			kΩ
CLOAD	Capacitive load				40	pF
V _{OHSAT} ⁽²⁾	High saturation output voltage	$R_{LOAD} = 4k\Omega$	V _{DDA} -25 0	V _{DDA} -150		mV
	voltage	$R_{LOAD} = 20k\Omega$	V_{DDA} -50	V_{DDA} -30		
V _{OLSAT} ⁽²⁾	Low saturation output	$R_{LOAD} = 4k\Omega$		3	10	mV
V OLSAT ^C	voltage	$R_{LOAD} = 20k\Omega$		3	10	111 V
	NSEL=010b mode in phase	Gain = 32, PB10 = GND	-3		3	%
		$Gain = 8,$ $V_{INP} < (V_{DDA}/7)$	-1		1	%
PGA Gain ⁽¹⁾		Gain = 16, $V_{INP} < (V_{DDA}/15)$	-1		1	%
	Internal in-phase PGA	Gain = 32, $V_{INP} < (V_{DDA}/31)$	-1		1	%
		$Gain = 64,$ $V_{INP} < (V_{DDA}/63)$	-1		1	%
Delta R	Absolute change in resistance		-15		15	%
	Employed in the	$R_{LOAD} = 4k\Omega@1kHz$		100		
eN ⁽¹⁾	Equivalent input voltage noise	$\begin{array}{l} R_{\text{LOAD}} &= \\ 20 k \Omega @ 1 \text{KHz} \end{array}$		60		nV/ sqrt(Hz)

Note: 1. Design parameters are guaranteed;

2. Load current will limit saturated output voltage.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{DDA}	Supply voltage	Recommended not less than 2.4V	1.8	3.3	3.6	V
V _{CM}	Common mode input voltage		0		V _{DDA}	V
VIOFFSET	Input offset voltage			±2	±12	mV
I _{LOAD}	Drive current	$R_{LOAD} = 10k\Omega$			360	uA
I _{LOAD_PGA}	PGA mode drive current				500	uA
I _{DDOPAMP}	Current consumption	No load, static mode		40		uA
C _{MRR} ⁽¹⁾	Common mode rejection ratio	@1kHz		90		dB

Table 3-32-2 OPA characteristics (low-power mode)

P _{SRR} ⁽¹⁾	Power supply rejection ratio	@1kHz		78		dB	
Av ⁽¹⁾	Open loop gain	$C_{LOAD} = 5 pF$		115		dB	
G _{BW} ⁽¹⁾	Unit gain bandwidth	$C_{LOAD} = 5 pF$		4		MHz	
P _M ⁽¹⁾	Phase margin	$C_{LOAD} = 5pF$		76			
$S_{R}^{(1)}$	Slew rate limited	$C_{LOAD} = 5 pF$		2.2		V/us	
t _{WAKUP} ⁽¹⁾	Setup time from shutdown to wake up, 0.1%	Input V _{DDA} /2, C _{LOAD} = 30pF, R _{LOAD} = $4k\Omega$			1.1	us	
R _{LOAD}	Resistive load		10			kΩ	
CLOAD	Capacitive load				30	pF	
V _{OHSAT} ⁽²⁾	High saturation output	$R_{LOAD} = 10k\Omega$	V _{DDA} -30 0	V _{DDA} -180		mV	
	voltage	$R_{LOAD} = 20k\Omega$	V _{DDA} -60	V _{DDA} -35			
Volsat ⁽²⁾	Low saturation output	$R_{LOAD} = 10k\Omega$		4	15	mV	
V OLSAT ⁽²⁾	voltage	$R_{LOAD} = 20k\Omega$		4	15		
	NSEL=010b mode in	Gain = 32, PB10 =	-3		3	%	
	phase	GND	-3		5	70	
		$Gain = 8,$ $V_{INP} < (V_{DDA}/7)$	-1		1	%	
PGA Gain ⁽¹⁾		$Gain = 16,$ $V_{INP} < (V_{DDA}/15)$	-1		1	%	
	Internal in-phase PGA	Gain = 32, V _{INP} <(V _{DDA} /31)	-1		1	%	
		$Gain = 64,$ $V_{INP} < (V_{DDA}/63)$	-1		1	%	
Delta R	Absolute change in resistance		-15		15	%	
	Equivalent input welters	$R_{LOAD} = 10k\Omega@1kHz$		100			
eN ⁽¹⁾	Equivalent input voltage noise	$\begin{array}{l} R_{LOAD} & = \\ 20k\Omega@1KHz \end{array}$		80		nV/ sqrt(Hz)	

Note: 1. Design parameters are guaranteed;

2. Load current will limit saturated output voltage.

3.3.20 CMP Characteristics

Table 3-33-1 CM	P characteristics
-----------------	-------------------

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{DDA}	Supply voltage		1.8	3.3	3.6	V
V _{CM}	Common mode input voltage		0		V _{DDA}	V
VIOFFSET	Input offset voltage			± 2.8	±10	mV
I _{DDOPAMP}	Current consumption			43		uA
V _{hys}	Hysteresis voltage			±15		mV
t _D ⁽¹⁾	Comparator delay.	$0 \leq V_{INN} \leq V_{DDA}$		16	40	ns

V _{INP} varies from (V _{INN} -100mV)		
to (V _{INN} +100mV) change			

Note: 1. Design parameters are guaranteed.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{DDA}	Supply voltage		1.8	3.3	3.6	V
V _{CM}	Common mode input voltage		0		V _{DDA}	V
VIOFFSET	Input offset voltage			±4		mV
Iddopamp	Current consumption			3.5		uA
	Comparator delay.					
t _D ⁽¹⁾	V _{INP} varies from	$0 \le V_{INN} \le V_{DDA}$		251	400	
^{LD} C ²	$(V_{INN}-100mV)$ to	$0 \ge V INN \ge V DDA$		231	251 400	ns
	(V _{INN} +100mV) change					

Table 3-33-2 CMP characteristics	(low-power mode)
----------------------------------	------------------

Note: 1. Design parameters are guaranteed.

Chapter 4 Package and Ordering Information

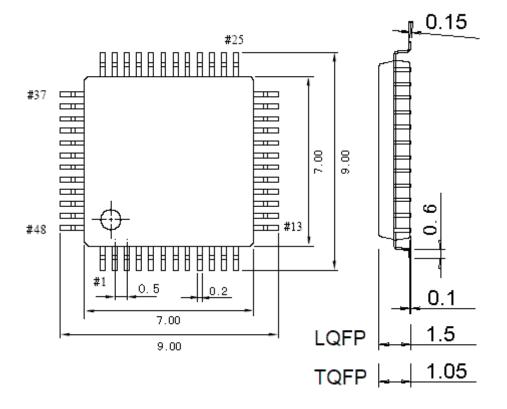
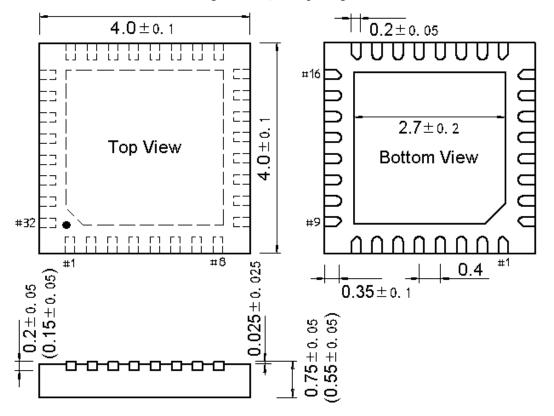
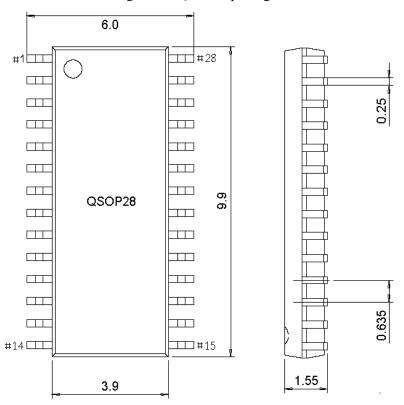
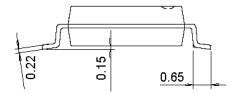
Packages

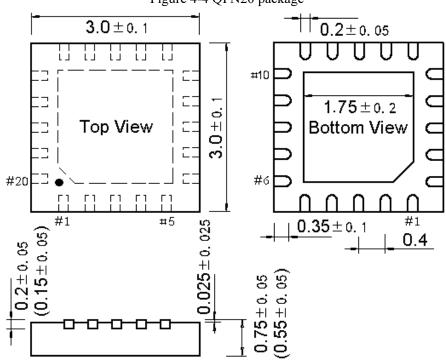
Order Model	Package Form	Body Size	Pin Pitch	Package Description	Packing Type
CH32L103C8T6	LQFP48	7*7mm	0.5mm	Low Profile Quad Flat Pack	Tray
CH32L103K8U6	QFN32	4*4mm	0.4mm	Quad Flat No-Lead Package	Tray
CH32L103G8R6	QSOP28	3.9*9.9mm	0.635mm	Quarter-sized Outline Package	Tube
CH32L103F8U6	QFN20	3*3mm	0.4mm	Quad Flat No-Lead Package	Tape & Reel
CH32L103F8P6	TSSOP20	4.4*6.5mm	0.65mm	Thin Shrink Small Outline Package	Tube, Tape & Reel

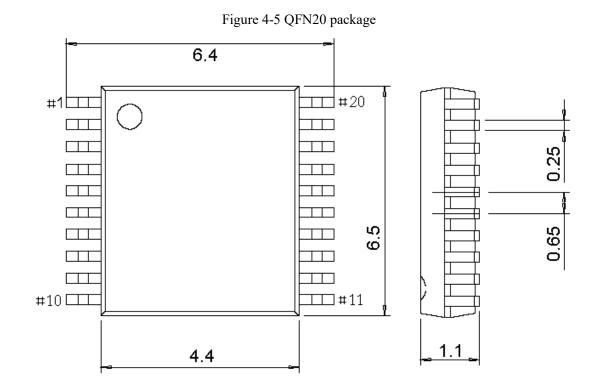
Note: 1. The packing type of QFP/QFN is usually tray.

2. Size of tray: The size of Tray is generally a uniform size (322.6*135.9*7.62). There are differences in the size of the restriction holes for different package types, and there are differences between different packaging factories for tubes, please confirm with the manufacturer for details.

Note: All dimensions are in millimeters. The pin center spacing values are nominal values, with no error. Other than that, the dimensional error is not greater than the greater of ± 0.2 mm or 10%. Figure 4-1 LQFP48 package


Figure 4-2 QFN32 package



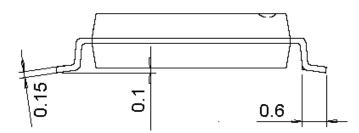


Figure 4-4 QFN20 package

Series Product Naming Rules

Example:	CH32	V		3	03 R	8	T I	6
Device family	1 1	MCU						
	l, general-purpose l							
· -	SC-V-based, genera							
	SC-V-based, low-po		an an asial IO					
X = QingKe RI	SC-V-based, Dedic	ated architecture (or special IO					
Product type								
0 = QingKe V2	/V4 core, great valu	ue version, main f	requency @ 4	-8M				
1 = M3 / QingK	Ke V3/V4 core, basi	ic version, main fr	requency @ 72	2M				
2 = M3 / Qing frequency @ 14	gKe V4 non-floati 14M	ng-point core, en	hanced versi	on, main				
	F floating-point co	re, main frequency	v @ 144M					
C8	8 r		0					
Device subfami	ily							
03 = General-p	urpose							
05 = Connectiv	ity (USB high-spee	d, SDIO, dual-CA	N)			Ī		
07 = Interconne	ctivity (USB high-	speed, CAN, Ethe	rnet, DVP, SI	DIO, FSM	IC)		ĺ	Í
08 = Wireless (1	BLE5.X, CAN, US	B, Ethernet)					ĺ	İ
35 = Connectiv	ity (USB, USB PD))						
Pin count								
J = 8 pins	A = 16 pins	F = 20 pins						
G = 28 pins	K = 32 pins	T = 36 pins						
C = 48 pins	R = 64 pins	W = 68 pins						
V = 100 pins	Z = 144 pins							
Flash memory s								
-	of Flash memory							
-	of Flash memory							
-	of Flash memory							
-	of Flash memory of Flash memory							
-	s of Flash memory							
C = 250 Köytes								
Package								
T = LQFP	U = QFN	R = QSOP	P = TSSOI	p	M = SOP		<u> </u>	
Tommore								
Temperature rai	nge							

- $6 = -40^{\circ}C \sim 85^{\circ}C$ (Industrial-grade)
- $7 = -40^{\circ}C \sim 105^{\circ}C$ (Automotive-grade 2)
- $3 = -40^{\circ}C \sim 125^{\circ}C$ (Automotive-grade 1)
- $D = -40^{\circ}C \sim 150^{\circ}C$ (Automotive-grade 0)